TEST REPORT

of

RE Directive (2014/53/EU) EN 301 489-1/17

Bluetooth 4.2 Module Product:

Brand: FANSTEL

Model: **BC832**

N/A **Model Difference:**

Fanstel Corporation, Taipei Applicant:

Address: 10F-10, No. 79, Sec. 1, Hsin Tai Wu Rd.,

Hsi-Chih, New Taipei City 221 Taiwan

Test Performed by:

International Standards Laboratory Corp. LT Lab.

TEL: +886-3-263-8888 FAX: +886-3-263-8899

No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325,

Taiwan

Report No.: ISL-16LR342E489-R2 Issue Date :2022/02/18

Test results given in this report apply only to the specific sample(s) tested and are traceable to national or international standard through calibration of the equipment and evaluating measurement uncertainty

The uncertainty of the measurement does not include in consideration of the test result unless the customer required the determination of uncertainty via the agreement, regulation or standard document specification.

This test report shall not be reproduced except in full, without the written approval of International Standards Laboratory Corp.

VERIFICATION OF COMPLIANCE

Applicant: Fanstel Corporation, Taipei

Equipment Under Test: Bluetooth 4.2 Module

Brand Name: FANSTEL

Model Number: BC832

Model Different: N/A

Date of Test: $2022/01/19 \sim 2022/02/17$

Date of EUT Received: 2022/01/19

	APPLICABLE STANDARDS						
EN 301	489 -1 v2.2.3: 2019	EN 301 489 –17 v3.2.4: 2020					
EMI:	EN 55032 2015+A11:2020						
EMS:							
	EN 61000-4-2:2009	EN 61000-4-3:2006+A1:2008 +A2:2010					

In the configuration tested, the EUT complied with the standards specified above.

Remarks:

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of **International Standards Laboratory Corp.** or testing done by in connection with distribution or use of the product described in this report must be approved by **International Standards Laboratory Corp.** in writing.

Test By:	Jason Chao	Date:	2022/02/18	
	Jason Chao / Senior Engineer			
Prepared By:	Cigi Vah / Sanjan Enginaan	Date:	2022/02/18	
Approved By:	Gigi Yeh / Senior Engineer	Date:	2022/02/18	
	Jerry Liu / Assistant Manager			

Version

Version No. Date		Description
00	2022/02/18	Initial creation of document

TABLE OF CONTENTS

1. GEN	IERAL DESCRIPTION	5
1.1	DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)	5
1.2	GENERAL DESCRIPTION OF APPLIED STANDARDS	6
1.3	DESCRIPTION OF TEST MODES:	6
1.4	TEST FACILITY:	8
1.5	MODIFICATION LIST:	8
1.6	TEST CONDITION:	8
1.7	EQUIPMENT LIST:	9
1.8	CONFIGURATION OF TESTED SYSTEM	12
1.9	EXCLUSION BAND	13
2. RAD	DIO DISTURBANCE	15
2.1	TEST CONFIGURATION:	15
2.2	SPECIAL CONDITIONS:	15
2.3	SUMMARY OF TEST RESULTS	15
2.4	ENCLOSURE OF ANCILLARY EQUIPMENT MEASURED ON A STANDALONE BASIS.	16
2.5	DC POWER INPUT/OUTPUT PORTS MEASUREMENT	23
2.6	AC Mains power input/output ports measurement.	25
2.7	HARMONIC CURRENT EMISSIONS (AC MAINS INPUT PORT) MEASUREMENT. REFER TO EN 301 489-1 SECTION 8.5	28
2.8	VOLTAGE FLUCTUATIONS AND FLICKER (AC MAINS INPUT PORT) MEASUREMENT. REFER TO EN 301 489-1 SECTION 8.6	31
2.9	TELECOMMUNICATION PORT MEASUREMENT. REFER TO EN 301 489-1 SECTION 8.7	32
3. IMN	IUNITY	33
3.1	Test Configuration:	33
3.2	SPECIAL CONDITIONS:	33
3.3	SUMMARY OF TEST RESULTS:	33
3.4	Performance Criteria Description:	34
3.5	ELECTROSTATIC DISCHARGE MEASUREMENT. REFER TO EN 301 489-1 SECTION 9.3	36
3.6	RADIO FREQUENCY ELECTROMAGNETIC FILED (80MHz to 6GHz) MEASUREMENT. REFER TO EN 301 489-1 SECTION 9.2	39
3.7	FAST TRANSIENTS, COMMON MODE MEASUREMENT. REFER TO EN 301 489-1 SECTION 9.4.	41
3.8	SURGES MEASUREMENT. REFER TO EN 301 489-1 SECTION 9.8	42
3.9	RADIO FREQUENCY, COMMON MODE MEASUREMENT. REFER TO EN 301 489-1 SECTION 9.5	43
3.10	Transients and surges in the vehicular environment measurement. Refer to EN 301 489-1 Section 9.6	44
3.11	VOLTAGE DIPS AND INTERRUPTIONS MEASUREMENT. REFER TO EN 301 489-1 SECTION 9.7	46
ESD T	EST POINT	47
PHOT(OGRAPHS OF TEST SETUP	49
пиот	OCD A DUC OF FUT	<i>5</i> 4

1. General Description

1.1 Description of Equipment under Test (EUT)

Product Name:	Bluetooth 4.2 Module
Brand:	FANSTEL
Model:	BC832
Model different:	N/A
Power Supply:	5Vdc from USB (JIG)
RF function	BT 4.2

Remark: The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.2 General Description of Applied Standards

The EUT According to the Specifications, it must comply with the requirements of the following standards:

ETSI EN301 489-1 V2.2.3: ElectroMagnetic Compatibility (EMC) standard for radio equipment and services;

Part 1: Common technical requirements; Harmonised Standard covering the essential requirements of article 3.1(b) of Directive 2014/53/EU and the essential requirements of article 6 of Directive 2014/30/EU

ETSI EN301 489-17 V3.2.4:

Part 17: Specific conditions for Broadband Data Transmission Systems; Harmonised Standard covering the essential requirements of article 3.1(b) of Directive 2014/53/EU

EN 55032 2015+A11:2020:

Electromagnetic compatibility of multimedia equipment - Emission requirements.

1.3 Description of Test Modes:

The transmitter shall be modulated with normal test modulation as specified for that type of equipment. Where transmitters do not have a modulation input port, the internal equipment modulation shall be used.

The wanted signals and/or controls required to establish a communications link shall be defined by the manufacturer.

The transmitter shall be operated at its maximum rated RF output power as specified for that type of equipment. The manufacturer may provide a suitable companion receiver that can be used to set up a communications link and/or to receive messages.

The tests shall be made exercising all primary functions in the most representative mode consistent with typical applications. The test sample shall be configured in a manner consistent with typical installation practice.

Test Plan

	Applicable standard	EN 301 489-17
		Config 1
	Test Configuration	EUT
		+ Smart mobile phone
	Operation mode	BT link
No.	Description	
1	radiated emission (30M-1GHz) (1-6GHz)	measured
2	conducted emission (DC Power)	N/A
3	conducted emission (AC Power)	measured
4	harmonic current emissions	N/A
5	voltage fluctuations and flicker	N/A
6	Conducted emission (wired network)	N/A
7	RF electromagnetic field (80MHz to 6GHz)	measured
8	electrostatic discharge	measured
9	fast transients common mode	N/A
10	RF common mode 0,15 MHz to 80 MHz	N/A
11	transients and surges	N/A
12	voltage dips and interruptions	N/A
13	surges, line to line and line to ground	N/A

Note 1: the test plan was accepted by the applicant

1.4 Test Facility:

The 10m anechoic chamber radiated emission measurement facilities used to collect the data are located at <LT Lab.> Address: No. 120, Lane 180, Hsin Ho Rd. Lung-Tan Dist., Tao Yuan City 325, Taiwan, The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

The 966 anechoic chamber radiated emission measurement (Above 1GHz) facilities used to collect the data are located at <LT Lab.> Address: No. 120, Lane 180, Hsin Ho Rd. Lung-Tan Dist., Tao Yuan City 325, Taiwan, The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

The AC power line conducted emission, flicker and all of immunity measurement facilities used to collect the data are located at <LT Lab.> Address: No. 120, Lane 180, Hsin Ho Rd. Lung-Tan Dist., Tao Yuan City 325, Taiwan, The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

Report Number: ISL-16LR342E489-R2

1.5 Modification List:

No modification by International Standards Laboratory Corp.

1.6 Test Condition:

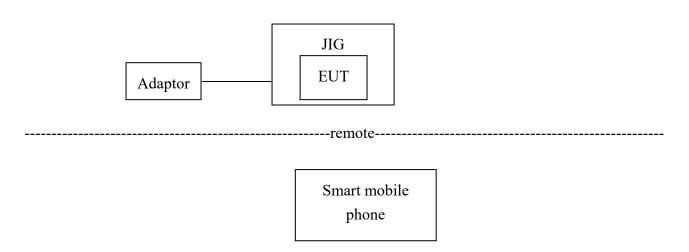
Refer to EN 301 489-1, Section 4 and EN 301 489-17, Section 4 for the details.

1.7 Equipment List:

Location	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Conduction 03	EMI Receiver 15	ROHDE & SCHWARZ	ESCI	101166	07/07/2021	07/07/2022
Conduction 03	Chamber05 -1 Cable	WOKEN	CFD 300-NL	Chamber05 -1 Cable	08/30/2021	08/30/2022
Conduction 03	LISN 19	R&S	ENV216	101425	11/11/2021	11/11/2022
Conduction 03	LISN 22	R&S	ENV216	101478	10/28/2021	10/28/2022
Conduction 03	LISN 24	SCHWARZBEC K	NNLK 8121	8121-829	07/26/2021	07/26/2022
Conduction 03	ISN T4 09	Teseq GmbH	ISN T400A	49914	08/02/2021	08/02/2022
Conduction 03	ISN T8 09	Teseq GmbH	ISN T800	36190	09/30/2021	09/30/2022
Conduction 03	ISN T8 CAT6A_01	SCHWARZBEC K	NTFM 8158	8158 0123	01/25/2022	01/25/2023
Conduction 03	CDN ISN ST08A_1	Teseq GmbH	CDN ISN ST08A	43352	10/07/2021	10/07/2022
Conduction 03	Capacitive Voltage Probe 01	SCHAFFNER	CVP 2200A	18711	08/05/2021	08/05/2022
Conduction 03	Current Probe	SCHAFFNER	SMZ 11	18030	03/04/2021	03/04/2022

Location	Equipment Name	Brand	Model	S/N	Last Cal.	Next Cal.
Chamber02					Date	Date
Radiation	BILOG Antenna 17 (30MHz~1GHz)	Schwarzbeck	Schwarzbeck VULB 9168+EMCI-N- 6-05	645	04/13/2021	04/13/2022
Radiation	Preamplifier 25	EMCI	EMC9135	980295	04/03/2021	04/03/2022
Radiation	Coaxial Cable Chmb 02-10M-02	EMC	RG214U	Chmb 02-10M-02	10/13/2021	10/13/2022
Radiation	EMI Receiver 12	ROHDE & SCHWARZ	ESCI	100804	08/04/2021	08/04/2022

Location Conducted	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Chamber 19	Spectrum analyzer	R&S	FSV40	101919	08/18/2021	08/18/2022
Chamber 19	EMI Receiver	R&S	ESR3	102461	05/05/2021	05/05/2022
Chamber 19	Loop Antenna	EM	EM-6879	271	09/29/2021	09/29/2022
Chamber 19	Bilog Antenna (30MHz-1GHz)	Schwarzbeck	VULB9168 w 6dB Att.	9168-736	02/22/2021	02/22/2022
Chamber 19	Horn antenna (1GHz-18GHz)	ETS	3117	00218718	10/12/2021	10/12/2022
Chamber 19	Horn antenna (18GHz-26GHz)	Com-power	AH-826	081001	11/30/2021	11/30/2022
Chamber 19	Horn antenna (26GHz-40GHz)	Com-power	AH-640	100A	03/11/2021	03/11/2022
Chamber 19	Preamplifier (9kHz-1GHz)	НР	8447F	3113A04621	06/22/2021	06/22/2022
Chamber 19	Preamplifier (1GHz-26GHz)	EM	EM01M26G	060681	05/07/2021	05/07/2022
Chamber 19	Preamplifier (26GHz-40GHz)	MITEQ	JS4-26004000- 27-5A	818471	05/07/2021	05/07/2022
Chamber 19	RF Cable (100kHz-26.5GHz)	HUBER SUHNER	Sucoflex 104A	MY1394/4A & 50886/4A	08/30/2021	08/30/2022
Chamber 19	RF Cable (18GHz-40GHz)	HUBER SUHNER	Sucoflex 102	27963/2&37421/2	11/17/2021	11/17/2022
Chamber 19	Signal Generator	Anritsu	MG3692A	20311	12/28/2021	12/28/2022
Chamber 19	Test Software	Audix	E3 Ver:6.12023	N/A	N/A	N/A



Location	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
EN61K-4-2	ESD Gun 12	EM TEST	Dito	P1650188689	05/05/2021	05/05/2022
EN61K-4-2	ESD Gun 07	NoiseKen	ESS-2002EX	ESS0878638	01/14/2022	01/14/2023
EN61K-4-2	ESD Gun 11	TESEQ	NSG438	1278	11/02/2021	11/02/2022
EN61K-4-3	Broadband Log-Periodic Antenna	AR	AT1080	310698	N/A	N/A
EN61K-4-3	Horn Antenna RF-01	AR	ATS700M11G	0335864	N/A	N/A
EN61K-4-3	Amplifier 80Mz~1GHz 250W	AR	250W1000A	312494	N/A	N/A
EN61K-4-3	Amplifier 800MHz~4.2GHz 50W	AR	50S1G4M1	312762	N/A	N/A
EN61K-4-3	Amplifier 4.0~8.0GHz 35W	AR	35S4G8AM1	0335752	N/A	N/A
EN61K-4-3	Broadband Coupler 80M~1GHz	Amplifier Research	DC6180A	0341805	N/A	N/A
EN61K-4-3	Coaxial Cable	INSULATED	NPS-4806-2360- NP3	108599.003.01. 03	N/A	N/A
EN61K-4-3	Broadband Coupler 0.8G~4.26GHz	AR	DC7144A	0335226	N/A	N/A
EN61K-4-3	Broadband Coupler 4G~8GHz	AR	DC7350A	0335817	N/A	N/A
EN61K-4-3	Signal Generator 08	ROHDE& SCHWARZ	SMB100A	106541	05/12/2021	05/12/2022
EN61K-4-3	Couditioning Amplifier_1	B&K	WH 3278	3003172	03/09/2021	03/09/2022
EN61K-4-3	Microphone Type 4192-2	B&K	4192	2752005	10/19/2021	10/19/2022

PS: $N/A \Rightarrow$ The equipment does not need calibration.

1.8 Configuration of Tested System

Table 1-1 Support Equipment Used in Tested System

Item	Equipment	Mrf/Brand	Model name	Series No	Data Cable	Power Cable
1	adaptor	Apple	A1385	N/A	N/A	Shielded /1m
2	Smart mobile phone	hTC	PL99110	N/A	N/A	N/A

I/O Cable Condition of EUT and Support Units

Description	Path	Cable Length	Cable Type	Connector Type
USB power cable	Adaptor USB port to JIG micro USB port	1.2m	Shielded	Metal Head

Note: All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.

Grounding: Grounding was in accordance with the manufacturer's requirements and conditions for the intended use.

1.9 Exclusion band

For EN301489-1

Exclusion band for transmitters or the transmitter part of transceivers

Channelized Equipment

For channelized equipment the exclusion band shall extend 250 % of the channel width either side of the transmitter centre frequency.

NOTE: Exclusion band of 250 % is based on the ITU Radio Regulations, as the boundary between OOB and Spurious Domain.

Non-Channelized Equipment

For non-channelized equipment the exclusion band shall extend 250 % of the occupied bandwidth either side of the transmitter centre frequency.

NOTE: Exclusion band of 250 % is based on the ITU Radio Regulations, as the boundary between OOB and Spurious Domain.

Exclusion band for receivers or the receiver part of transceivers

Channelized Equipment

For channelized equipment the exclusion band shall be calculated by using the following formulae:

For the lower edge for the exclusion band:

EXband(lower) = BandRX(lower) - nChWRX

and for the upper edge of the exclusion band:

EXband(upper) = BandRX(upper) + nChWRX

Where n = number of channel widths required for exclusion band.

For equipment that support multiple channel widths the Channel Width used should be the widest support by the EUT.

Where the present document is being used in a stand-alone basis (i.e. with no reference to other relevant radio technology parts of ETSI EN 301 489 series), the value of n shall be 1.

Non-Channelized Equipment

For non-channelized equipment the exclusion band shall be calculated by using the following formula: For the lower edge for the exclusion band:

EXband(lower) = BandRX(lower) - nBWRX

and for the upper edge of the exclusion band:

EXband(upper) = BandRX(upper) + nBWRX

Where n = multiple of whole bandwidths required to define exclusion band.

Bandwidth of Receiver is the occupied bandwidth of the corresponding transmitter signal.

Where the present document is being used in a stand-alone basis (i.e. with no reference to other relevant radio technology parts of ETSI EN 301 489 series), the value of n shall be 1

For EN 301489-17

The frequencies on which the transmitter part of the EUT is intended to operate shall be excluded from conducted and radiated emission measurements when performed in transmit mode of operation.

The exclusion band for immunity testing of equipment operating in the 2,4 GHz band shall be: lower limit of exclusion band = lowest allocated band edge frequency -120 MHz, i.e. 2 280 MHz; upper limit of exclusion band = highest allocated band edge frequency +120 MHz, i.e. 2 603,5MHz.

The exclusion band for immunity testing of equipment operating in the 5 GHz Wi-Fi band shall be: ower limit of exclusion band = lowest allocated band edge frequency -270 MHz, i.e. 4 880 MHz; upper limit of exclusion band = highest allocated band edge frequency +270 MHz, i.e. 5 995 MHz.

The exclusion band for immunity testing of equipment operating in the 5,8 GHz band shall be: lower limit of exclusion band = lowest allocated band edge frequency -270 MHz, i.e. 5 455 MHz; as the immunity requirements have an upper frequency range of 6 GHz and any upper edge exclusion band would be greater than this for the 5,8 GHz band. The above frequency shall also be regarded as the upper end of the test range.

2. Radio Disturbance

EN 301 489-17

2.1 Test Configuration:

Refer to EN 301 489-1, Section 8.1.

2.2 Special Conditions:

No special conditions shall apply to UE in the scope of the present document.

2.3 Summary of Test Results

Test Items	Reference section	Result
Enclosure of ancillary equipment	EN 301 489-1 Section 8.2	PASS
measured on a stand alone basis,	EN 55032 Annex A.2	
EN 55032, Class B		
DC mains power input/output ports	EN 301 489-1 Section 8.3	N/A
AC mains power input/output ports	EN 301 489-1 Section 8.4	PASS
EN 55032, Class B	EN 55032 Annex A.3	
Harmonic current emission, Class A	EN 301 489-1 Section 8.5	N/A
	EN 61000-3-2	
Voltage fluctuations and flicker	EN 301 489-1 Section 8.6	N/A
	EN 61000-3-3	
Telecommunication Port	EN 301 489-1 Section 8.7	N/A
	EN 55032 Annex B.2	

2.4 Enclosure of ancillary equipment measured on a standalone basis.

2.4.1 Test Method:

Standard	Description
EN 55032 2015+A11:2020:	Electromagnetic compatibility of multimedia equipment – Emission requirements

Limits: Class B

- NW	Mea	asurement	Class B limits dB(μ V/m)
Frequency range MHz	Distance m	Detector type/ bandwidth	OATS/SAC
30 – 230	10		30
230 – 1000	10	Quasi Peak /	37
30 – 230	3	120 kHz	40
230 – 1000	3		47

- NW	Mea	asurement	Class B limits dB(µV/m)
Frequency range MHz	Distance m	Detector type/ bandwidth	FSOATS
1000 – 3000		Average /	50
3000 - 6000	2	1 MHz	54
1000 - 3000	3	Peak /	70
3000 - 6000		1 MHz	74

Highest internal frequency	Highest measured frequency
(Fx)	
Fx ≤ 108 MHz	1 GHz
$108 \text{ MHz} < Fx \le 500 \text{ MHz}$	2 GHz
$500 \text{ MHz} < \text{Fx} \le 1 \text{ GHz}$	5 GHz
Fx > 1 GHz	5 × Fx up to a maximum of 6 GHz

NOTE 1 For FM and TV broadcast receivers, Fx is determined from the highest frequency generated or used excluding the local oscillator and tuned frequencies.

Report Number: ISL-16LR342E489-R2

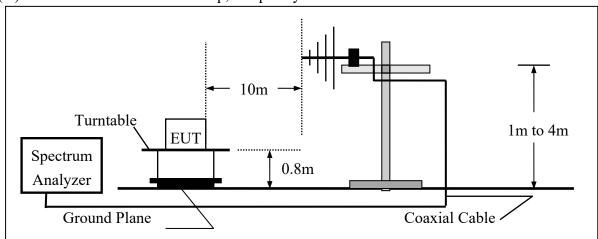
NOTE 2 Fx is defined in 3.1.19. of EN 55032

The highest internal source of an EUT is above 1GHz.

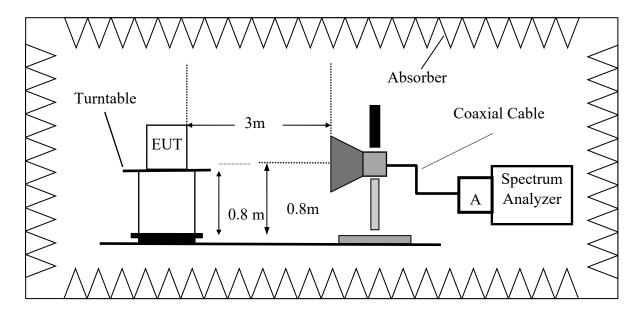
2.4.2 Test Procedure:

- 1. EUT was placed on an 0.8m wooden table.
- 2. Set up EUT with support units and turn on the power of all equipment.
- 3. Link the EUT with Telecommunication tester, setup the test mode. The transmitter operating at continuously mode and max output rated power.
- 4. The receive antenna is placed at 10m or 3m (3m for above 1GHz) distance from the EUT and search height from 1-4m.
- 5. The turntable was slowly rotated to locate the direction of maximum emission. Once maximum direction is determined, the search antenna was raised and lowered in both vertical and horizontal polarizations.

Report Number: ISL-16LR342E489-R2


2.4.3 Test Instruments:

Refer to section 1.7 in this report

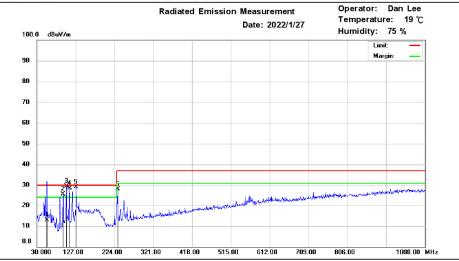


2.4.4 Test SET-UP (Block Diagram of Configuration)

(A) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(B) Radiated Emission Test Set-UP Frequency Over 1 GHz

Radiated Emission Measurement Data

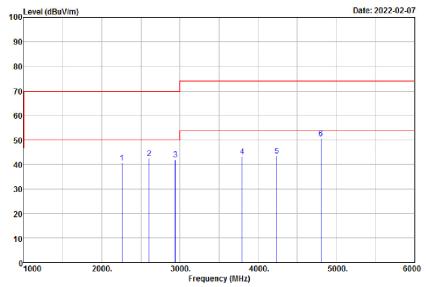


Chamber 02

Site :

Address:No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan. Tel:03-2638888

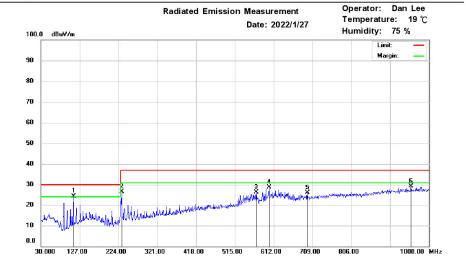
Polarization:



Mk.	Frequency (MHz)	RX_R (dBuV)	Correct Factor(dB/m)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	56.02	29.49	-16.56	12.93	30.00	-17.07	100	299	QP
2	94.99	46.94	-21.60	25.34	30.00	-4.66	100	148	peak
3	103.72	49.50	-20.18	29.32	30.00	-0.68	200	0	peak
4	111.48	47.65	-19.22	28.43	30.00	-1.57	200	106	peak
5	127.97	46.83	-17.94	28.89	30.00	-1.11	100	168	peak
6	231.76	45.52	-17.60	27.92	37.00	-9.08	100	196	peak

International Standard Laboratory Corp. Company Address:No. 120,Lane 180, Hsin Ho Rd. Lung-Tan Dist., Tao Yuan City 325, Taiwan Tel:(03)4071718; Fax:(03)4071738 Web:www.isl.com.tw

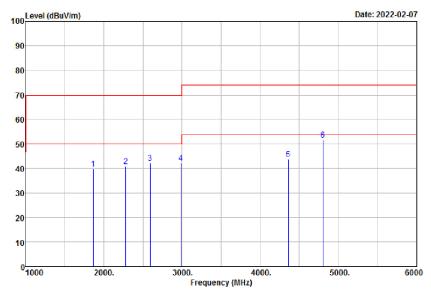
Condition: 55032 CLASS B PK 3m VERTICAL Site : Chamber 19


Operator : Jason

	Freq	Read Level	Factor	Level		Over Limit	Remark	Pol/Phase
-	MHz	dBuV	dB/m	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB		 :
1 2 3 4 5	2260.00 2605.00 2940.00 3795.00 4240.00 4805.00	52. 66 51. 85 51. 28 50. 62	-10. 34 -10. 04 -8. 06 -7. 08	42. 32 41. 81 43. 22 43. 54	70.00 70.00 74.00 74.00	-27. 68 -28. 19 -30. 78 -30. 46	Peak Peak Peak Peak	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

Address:No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan. Tel:03-2638888

Site: Chamber 02


Polarization: Horizontal

Mk.	Frequency (MHz)	RX_R (dBuV)	Correct Factor(dB/m)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	111.48	43.35	-19.22	24.13	30.00	-5.87	400	56	peak
2	231.76	43.96	-17.60	26.36	37.00	-10.64	200	118	peak
3	568.35	33.60	-7.57	26.03	37.00	-10.97	200	266	peak
4	600.36	35.40	-6.65	28.75	37.00	-8.25	200	231	peak
5	696.39	31.11	-5.25	25.86	37.00	-11.14	400	190	peak
6	955.38	30.29	-1.18	29.11	37.00	-7.89	300	307	peak

International Standard Laboratory Corp. Company Address:No. 120,Lane 180, Hsin Ho Rd. Lung-Tan Dist., Tao Yuan City 325, Taiwan Tel:(03)4071718; Fax:(03)4071738 Web:www.isl.com.tw

Condition: 55032 CLASS B PK 3m HORIZONTAL Site : Chamber 19

Operator : Jason

	Freq	Read Level	Factor	Level	Limit Line	Over Limit		Pol/Phase
-	MHz	dBuV	dB/m	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB		
1 2 3 4 5	1865. 00 2280. 00 2595. 00 2985. 00 4360. 00 4805. 00	52. 24 52. 63 51. 89 50. 46	-11. 46 -10. 37 -9. 65 -6. 70	40. 78 42. 26 42. 24 43. 76	70.00 70.00 70.00 74.00	-29. 22 -27. 74 -27. 76 -30. 24	Peak Peak Peak Peak	HOR I ZONTAL

2.5 DC power input/output ports measurement.

2.5.1 Test Method:

Standard	Description
EN 55032 2015+A11:2020:	Electromagnetic compatibility of multimedia equipment – Emission requirements

Refer to section 8.3.2 of EN301489-1 for detail.

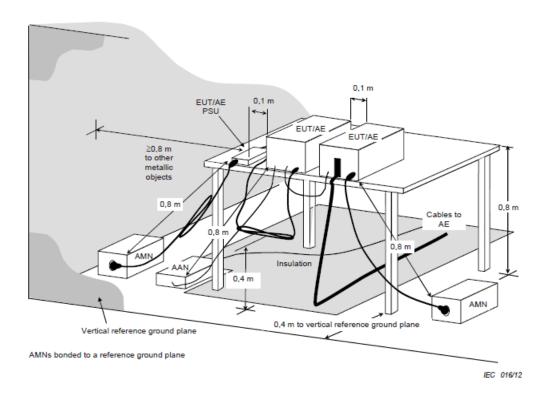
2.5.2 Limit:

Frequency range	Limit (quasi-peak) (dBµV)	Limit (average) (dBµV)			
0,15 MHz to 0,5 MHz	66 to 56	56 to 46			
> 0,5 MHz to 5 MHz	56	46			
> 5 MHz to 30 MHz	60	50			
NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0,15 MHz to 0,50 MHz.					

2.5.3 Test Procedure:

- 1. EUT was placed on an 0.8m wooden table above ground plane.
- 2. Set up EUT with support units and turn on the power of all equipment.
- 3. Link the EUT with Telecommunication tester, setup the test mode. The transmitter operating at continuously mode and max output rated power.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.

Report Number: ISL-16LR342E489-R2


5. Repeat above procedures until all frequency measured were complete.

2.5.4 Test Instruments:

Refer to section 1.7 in this report

2.5.5 Test SET-UP (Block Diagram of Configuration)

2.5.6 Measurement Result:

N/A,

2.6 AC Mains power input/output ports measurement.

2.6.1 Test Method:

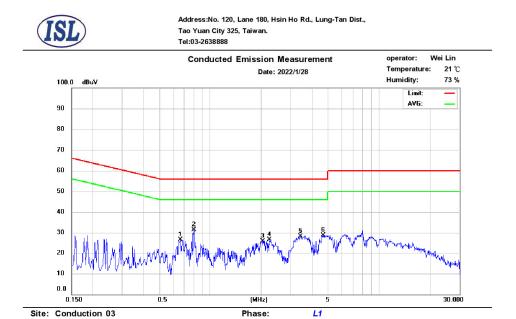
Standard	Description
EN 55032 2015+A11:2020:	Electromagnetic compatibility of multimedia equipment – Emission requirements

Refer to section 8.4.2 of EN301489-1 and 55032 Annex A for detail.

2.6.2 Limit: Refer to 2.5.2

2.6.3 Test Procedure: Refer to 2.5.3

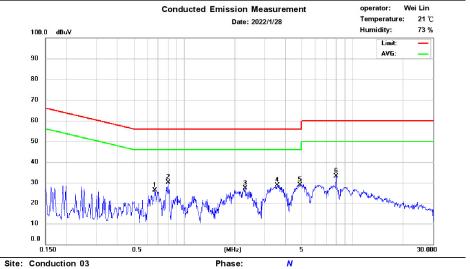
2.6.4 Test Instruments: Refer to 2.5.4


2.6.5 Conduction Emission Test Set-up: Refer to 2.5.5

2.6.6 Measurement Result:

Refer to next page for details.

2.6.7 Measurement Data:



No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.662	11.10	3.10	9.67	20.77	56.00	-35.23	12.77	46.00	-33.23
2	0.798	16.39	7.50	9.68	26.07	56.00	-29.93	17.18	46.00	-28.82
3	2.038	10.93	2.95	9.73	20.66	56.00	-35.34	12.68	46.00	-33.32
4	2.246	11.61	3.36	9.73	21.34	56.00	-34.66	13.09	46.00	-32.91
5	3.430	13.35	5.07	9.75	23.10	56.00	-32.90	14.82	46.00	-31.18
6	4.666	13.01	4.72	9.78	22.79	56.00	-33.21	14.50	46.00	-31.50

Address:No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan. Tel:03-2638888

Ľ	No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
	1	0.670	10.49	3.29	9.69	20.18	56.00	-35.82	12.98	46.00	-33.02
	2	0.802	16.10	8.09	9.69	25.79	56.00	-30.21	17.78	46.00	-28.22
	3	2.302	11.42	3.90	9.74	21.16	56.00	-34.84	13.64	46.00	-32.36
L	4	3.578	13.77	6.13	9.77	23.54	56.00	-32.46	15.90	46.00	-30.10
	5	4.854	14.24	6.64	9.80	24.04	56.00	-31.96	16.44	46.00	-29.56
	6	7.998	18.18	5.46	9.88	28.06	60.00	-31.94	15.34	50.00	-34.66

- 2.7 Harmonic Current Emissions (AC mains input port) measurement. Refer to EN 301 489-1 Section 8.5
- 2.7.1 Test Method: Refer to 61000-3-2:2014 and IEC 61000-3-2:2014

2.7.2 Limit

Table 1 - Limits for Class A equipment

Harmonic order	Maximum permissible harmonic current			
n	A			
Odd harmonics				
3	2,30			
5	1,14			
7	0,77			
9	0,40			
11	0,33			
13	0,21			
15 ≤ n ≤ 39	0,15 1 <u>5</u>			
Even har	rmonics			
2	1,08			
4	0,43			
6	0,30			
8 ≤ n ≤ 40	0,23 8 n			

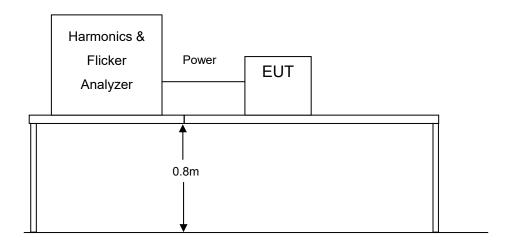
Note: For Class B equipment, the harmonics of the input current shall not exceed the values given in table 1 multiplied by a factor of 1,5.

Table 2 – Limits for Class C equipment

Harmonic order	Maximum permissible harmonic currrent expressed as a percentage of the input current at the fundamental frequency
n	%
2	2
3	30 ⋅ λ *
5	10
7	7
9	5
11 ≤ n ≤ 39	3
(odd harmonics only)	
* λ is the circuit power factor	

Table 3 – Limits for Class D equipment

Harmonic order	Maximum permissible harmonic current	Maximum permissible harmonic current
n	per watt mA/W	А
3	3,4	2,30
5	1,9	1,14
7	1,0	0,77
9	0,5	0,40
11	0,35	0,33
$13 \le n \le 39$ (odd harmonics only)	<u>3,85</u> n	See Table 1


2.7.3 Test Procedure:

The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn.

2.7.4 Test Instruments:

Refer to section 1.7 in this report

2.7.5 Test Set-up

2.7.6 Measurement Result:

N/A

2.8 Voltage Fluctuations and Flicker (AC mains input port) measurement. Refer to EN 301 489-1 Section 8.6

2.8.1 Test Method: Refer to EN 61000-3-3:2013 and IEC 61000-3-3:2013

2.8.2 Limit

TEST ITEM	LIMIT
P _{st}	1.0
P _{lt}	0.65
D(t)(ms)	500ms
d _{max} (%)	4%
dc (%)	3.3%

2.8.3 Test Procedure:

The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the most unfavorable sequence of voltage changes under normal operating conditions.

2.8.4 Test Instruments:

Refer to section 1.7 in this report

2.8.5 Test Set-up

Refer to 2.7.5

2.8.6 Measurement Result: N/A

2.9 Telecommunication Port measurement. Refer to EN 301 489-1 Section 8.7

2.9.1 Test Method:

Standard	Description
EN 55032 2015+A11:2020:	Electromagnetic compatibility of multimedia equipment – Emission requirements

Refer to section 8.7.2 of EN301489-1 for detail.

2.9.2 Limit: Limits for conducted emissions from telecommunication ports

Frequency range	Voltage limits		Current	limits
	Quasi-peak	Average	Quasi-peak	Average
0.15 MHz to 0.5 MHz	84 dBμV to 74	74 dBµV to 64	40 dBμA to	30 dBμA to 20
	dΒμV	dΒμV	30 dBμA	dBμA
0.5 MHz to 30 MHz	74 dBμV	64 dBμV	30 dBμA	20 dBμA

NOTE 1: The limits decrease linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

NOTE 2: The current and voltage disturbance limits are derived for use with an Impedance Stabilization Network (ISN) which presents a common mode (asymmetric mode) impedance of 150 Ω to the telecommunication port under test (conversion factor is $20 \log 10 \ 150/I = 44 dB$

NOTE 3: The emission requirement only applies to telecommunication ports as specified in EN 55032. The provisional relaxation of 10 dB will be reviewed no later than 3 years after the date of withdrawal based on the results and interference cases seen in this period. Wherever possible it is recommended to comply with the limits without the provisional relaxation.

Report Number: ISL-16LR342E489-R2

2.9.3 Test Procedure: Refer to EN 55032

2.9.4 Test Instruments: Refer to 2.5.4

2.9.5 Conduction Emission Test Set-up: Refer to 2.5.5

2.9.6 Measurement Result: N/A

3. IMMUNITY

EN 301 489-17

3.1 Test Configuration:

Refer to EN 301 489-1, Section 9.1.

3.2 Special Conditions:

No special conditions shall apply to UE in the scope of the present document.

3.3 Summary of Test Results:

Test Items	Reference Section	Result
Electrostatic discharge	EN 301 489-1 Section 9.3	PASS
Radio frequency electromagnetic	EN 301 489-1 Section 9.2	PASS
filed (80 to 1000MHz and		
1000MHz to 6000MHz)		
Fast transients, common mode	EN 301 489-1 Section 9.4	N/A
Surges	EN 301 489-1 Section 9.8	N/A
Radio Frequency, common mode	EN 301 489-1 Section 9.5	N/A
Voltage Dips and interruptions	EN 301 489-1 Section 9.7	N/A
Transients and surges in the	EN 301 489-1 Section 9.6	N/A
vehicular environment		

3.4 Performance Criteria Description:

3.4.1 EN 301 489-17

The performance criteria are:

- performance criteria A for immunity tests with phenomena of a continuous nature;
- performance criteria B for immunity tests with phenomena of a transient nature;
- performance criteria C for immunity tests with power interruptions exceeding a certain time.

The equipment shall meet the minimum performance criteria as specified in the following clauses.

Criteria	During test	After test		
Crittia	During test			
		(i.e. as a result of the application of the		
		test)		
Α	Shall operate as intended.	• Shall operate as intended.		
	(See note).	• Shall be no degradation of performance.		
	• Shall be no loss of function.	• Shall be no loss of function.		
	• Shall be no unintentional	• Shall be no loss of critical stored data.		
	transmissions.			
В	May be loss of function.	• Functions shall be self-recoverable.		
		• Shall operate as intended after		
		recovering.		
		• Shall be no loss of critical stored data.		
С	• May be loss of function.	• Functions shall be recoverable by the		
		operator.		
		• Shall operate as intended after		
		recovering.		
		• Shall be no loss of critical stored data.		
NOTE	Operate as intended during the test allows a level of degradation:			
	Minimum performance level:			
	• For equipment that supports a PER or FER, the minimum performance level shall			
	be a PER or FER less than or equal to 10 %.			
		PER or a FER, the minimum performance		
		nsmission function needed for the intended		
	use of the equipment.			

Performance criteria for Continuous phenomena

The performance criteria A shall apply.

Where the EUT is a transmitter in standby mode, unintentional transmission shall not occur during the test.

Where the EUT is a transceiver in receive mode, unintentional transmission shall not occur during the test.

Performance criteria for Transient phenomena

The performance criteria B shall apply, except for voltage dips greater than or equal to 100 ms and voltage interruptions of 5000 ms duration, for which performance criteria C shall apply.

Where the EUT is a transmitter in standby mode, unintentional transmission shall not occur as a result of the application of the test.

Where the EUT is a transceiver in receive mode, unintentional transmission shall not occur as a result of the application of the test.

3.5 Electrostatic Discharge Measurement. Refer to EN 301 489-1 Section 9.3

3.5.1 Test Method and Procedure:

EN 61000-4-2 and EN 301 489-1 Section 9.3.2.


3.5.2 Performance criteria:

Refer to EN 301 489-1 Section 9.3.3.

3.5.3 Test Instruments:

Refer to section 1.7 in this report

3.5.4 Test SET-UP (Block Diagram of Configuration)

3.5.5 Measurement Result:

Operation Mode:	Config 1	Test Date:	2022/2/8
Temperature:	22 °C	Humidity:	45%
		Test By:	Jason

Basic Standard : EN 61000-4-2 Discharge Impedance : 330 ohm / 150 pF

Discharge Voltage : Air Discharge: $\pm -2 \approx 8 \text{ kV}$

Contact Discharge:+/- 2 ~ 4 kV

VCP/HCP:+/- 2 ~ 4 kV

Polarity : Positive/Negative

Number of Discharge : Minimum 10/50 times at each test point

Discharge Mode : Single Discharge Discharge Period : 1 second minimum

Note 1:For contact discharge, the EUT shall be exposed to at least 50 discharges, 25

each at negative and positive polarity. For air discharge, A minimum of 10

Report Number: ISL-16LR342E489-R2

single air discharges shall be applied

Note 2:Test point refer to test report Appendix 1

Air Discharge							
Test Levels					Results		
±2kV	Performance Criterion	±4kV	Performance Criterion	± 8kV	Performance Criterion	Pass	Fail
	□A □B □C		□А		□а		
							1
			Contact Discha	rge			
			Test Levels			Res	ults
±2kV	Performance Criterion	±4kV	Performance Criterion	± 6kV	Performance Criterion	Pass	Fail
	⊠A □B □C	\boxtimes	⊠A		□ А □В	\boxtimes	
			Discharge To V	СР			
Test Levels						Results	
±2kV	Performance Criterion	±4kV	Performance Criterion	± 6kV	Performance Criterion	Pass	Fail
	⊠A	\boxtimes	⊠A		□ А □В □С	\boxtimes	
Discharge To HCP							
Test Levels Results						ults	
±2kV	Performance Criterion	±4kV	Performance Criterion	± 6kV	Performance Criterion	Pass	Fail
\boxtimes	⊠A □B □C	\boxtimes	⊠A □B □C		□A □B	\boxtimes	
Domas		_		_		-	_

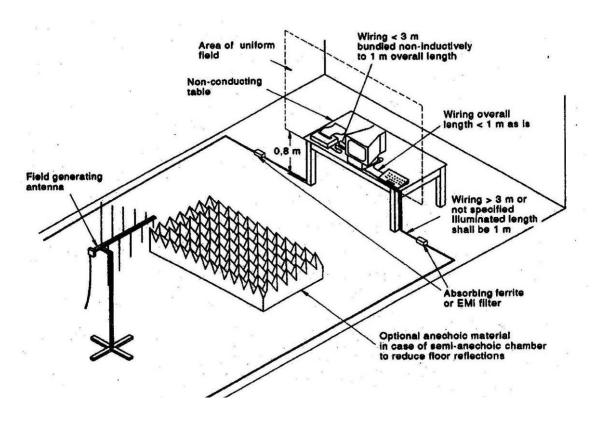
Report Number: ISL-16LR342E489-R2

A: No degradation in the performance of the EUT was observed.

3.6 Radio Frequency Electromagnetic Filed (80MHz to 6GHz) Measurement. Refer to EN 301 489-1 Section 9.2

3.6.1 Test Method and Procedure:

EN 61000-4-3 and EN 301 489-1 Section 9.2.2.


3.6.2 Performance criteria:

Refer to EN 301 489-1 Section 9.2.3.

3.6.3 Test Instruments:

Refer to section 1.7 in this report

3.6.4 Test SET-UP (Block Diagram of Configuration): Test setup:

3.6.5 Measurement Result:

Refer to below for results.

3.6.6 Measurement Data:

Operation Mode:	Config 1	Test Date:	2022/2/7
Temperature:	21 ℃	Humidity:	55 %
		Test By:	Jason

Basic Standard : EN 61000-4-3 Frequency range : 80 to 6000MHz

Field strength : 3 V/m

Modulation : AM 80%, 1 kHz Sinewave

Frequency step : 1 % of fundamental Polarity of Antenna : Horizontal and Vertical

Test distance : 3 m (EUT to antenna reference point)

No.	Frequency	Antenna Orientation	Observation	EUT
	(MHz)			Orientation
1	80 - 6000	Vertical/Horizontal	CT, CR and A, the EUT	0 degree
2	80 - 6000	Vertical/Horizontal	to be continuously	90 degree
3	80 - 6000	Vertical/Horizontal	received with no	180 degree
4	80 - 6000	Vertical/Horizontal	timeouts	270 degree

Report Number: ISL-16LR342E489-R2

Remark:

A : No degradation in the performance of the EUT was observed.

N/A: Not Applicable.

3.7 Fast Transients, Common Mode Measurement. Refer to EN 301 489-1 Section 9.4

3.7.1 Test Method and Procedure:

EN 61000-4-4, and EN 301 489-1 Section 9.4.2.

3.7.2 Performance criteria:

Refer to EN 301 489-1 Section 9.4.3.

3.7.3 Test Instruments

Refer to section 1.7 in this report

3.7.4 Test SET-UP (Block Diagram of Configuration):

Refer to Appendix 2 setup photo

3.7.5 Measurement Result:

3.8 Surges Measurement. Refer to EN 301 489-1 Section 9.8

3.8.1 Test Method and Procedure:

EN 61000-4-5, and EN 301 489-1 Section 9.8.2.

3.8.2 Performance criteria:

Refer to EN 301 489-1 Section 9.8.3.

3.8.3 Test Instruments:

Refer to section 1.7 in this report

3.8.4 Test SET-UP (Block Diagram of Configuration):

Refer to Appendix 2 setup photo

3.8.5 Measurement Result:

3.9 Radio Frequency, Common Mode Measurement. Refer to EN 301 489-1 Section 9.5

3.9.1 Test Method and Procedure:

EN 61000-4-6, and EN 301 489-1 Section 9.5.2.

3.9.2 Performance criteria:

Refer to EN 301 489-1 Section 9.5.3.

3.9.3 Test Instruments:

Refer to section 1.7 in this report

3.9.4 Test SET-UP (Block Diagram of Configuration):

Refer to Appendix 2 setup photo

3.9.5 Measurement Result:

3.10 Transients and surges in the vehicular environment measurement. Refer to EN 301 489-1 Section 9.6

3.10.1 Test Method and Procedure:

Refer to ISO 7637-2 for 12Vdc and 24Vdc equipment., and EN 301 489-1 Section 9.6.2.

3.10.2 Performance criteria:

Refer to EN 301 489-1 Section 9.6.3.

3.10.3 Test Instruments:

Refer to section 1.7 in this report

Pulse	Us/Vs	Ri	Test parameters	Delay	Figure
ISO 7637-2 (2004) – Pulse 1	-450V	50.0 Ohm	td = 1.0ms, t1 = 2.5s, t2 = 200.0m	0.0 s	U _A
ISO 7637-2 (2004) – Pulse 2A	37.5V	2.0 Ohm	td = 50.0us, t1 = 3.0s	0.0 s	t _i SCHAFFNER
ISO 7637-2 (2004) – Pulse 2B	20.0V	0.0 Ohm	td = 1.0s	60.0 s	U _A U _b t _c 111 SCHAFFNEF U _b t _c t _c

ISO 7637-2 (2004) – Pulse 3A	-150V	50.0 Ohm	t1 = 100.0us, t4 = 10.0ms, t5 = 90.0ms	0.0 s	OV III SCHAFFNER
ISO 7637-2 (2004) – Pulse 3B	150V	50.0 Ohm	t1 = 100.0us, t4 = 10.0ms, t5 = 90.0ms	0.0 s	U _A III. SCHAFFNET t
ISO 7637-2 (2004) – Pulse 4	-12V	0.0 Ohm	Ua = -5.0V, t7 = 70.0ms, t8 = 30.0ms, t9 + 10.0s, t10 = 10.0ms, t11 = 50.0ms	60.0 s	

3.10.4 Test SET-UP (Block Diagram of Configuration): Refer to Appendix 2 setup photo.

3.10.5 Measurement Result:

N/A.

3.11 Voltage Dips and Interruptions Measurement. Refer to EN 301 489-1 Section 9.7

3.11.1 Test Method and Procedure:

EN 61000-4-11, and EN 301 489-1 Section 9.7.2.

3.11.2 Performance criteria:

Refer to EN 301 489-1 Section 9.7.3.

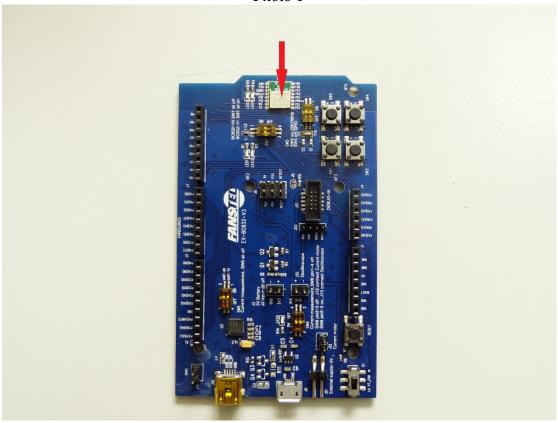
3.11.3 Test Instruments

Refer to section 1.7 in this report

3.11.4 Test SET-UP:

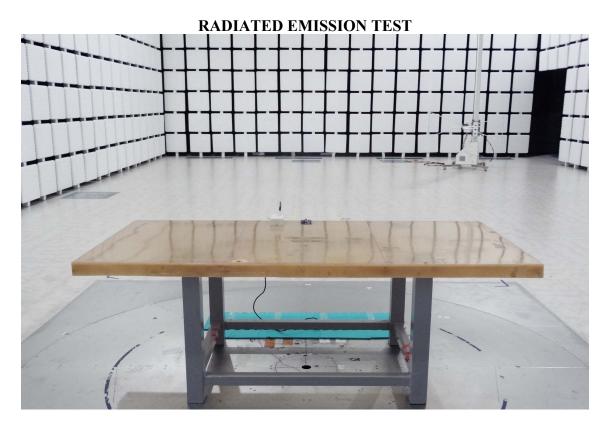
Refer to Appendix 2 setup photo

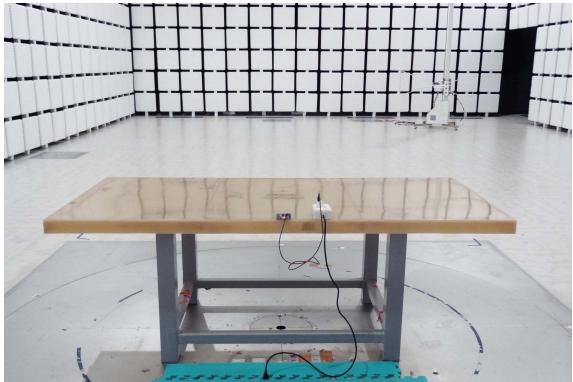
3.11.5 Measurement Result:



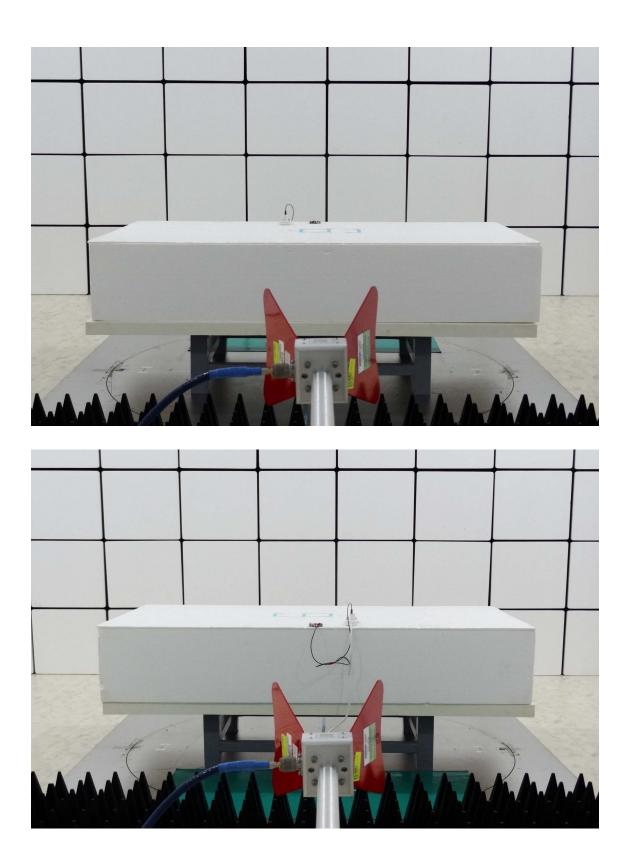
APPENDIX 1 ESD TEST POINT

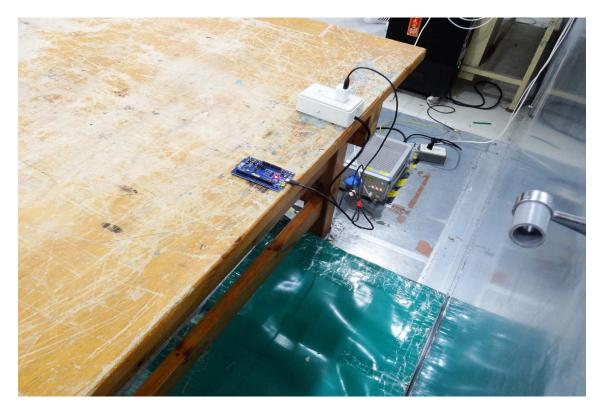
Report Number: ISL-16LR342E489-R2





APPENDIX 2 PHOTOGRAPHS OF TEST SETUP


Report Number: ISL-16LR342E489-R2



APPENDIX 3 PHOTOGRAPHS OF EUT

Report Number: ISL-16LR342E489-R2

EUT 1

EUT 2

EUT 3

