TEST REPORT of # RE Directive (2014/53/EU) ETSI EN 300 328 v2.1.1: 2016 **Product:** Bluetooth Low Energy (BLE) 5 Module **Brand:** FANSTEL Model: BT832; BT832A; BT832F; BT832AF Model Difference: Please see page 5 model summaries table **Applicant:** Fanstel Corporation, Taipei Address: 10F-10, No. 79, Sec. 1, Hsin Tai Wu Rd., Hsi-Chih, New Taipei City 221 Taiwan ## **Test Performed by:** ## **International Standards Laboratory** <Lung-Tan LAB> *Address: No. 120, Lane 180, Hsin Ho Rd. Lung-Tan Dist., Tao Yuan City 325, Taiwan *Tel: 886-3-407-1718; Fax: 886-3-407-1738 Report No.: ISL-17LR237E328 Issue Date: 2017/08/24 Test results given in this report apply only to the specific sample(s) tested and are traceable to national or international standard through calibration of the equipment and evaluating measurement uncertainty herein. This report MUST not be used to claim product endorsement by TAF, NEMKO or any agency of the Government. This test report shall not be reproduced except in full, without the written approval of International Standards Laboratory. #### **VERIFICATION OF COMPLIANCE** **Applicant:** Fanstel Corporation, Taipei **Equipment Under Test:** Bluetooth Low Energy (BLE) 5 Module **Brand Name:** FANSTEL **Model Number:** BT832; BT832A; BT832F; BT832AF **Model Different:** Please see page 5 model summaries table **Date of Test:** $2017/08/09 \sim 2017/08/23$ **Date of EUT Received:** 2017/08/09 | APPLICABLE STANDARDS | | | | | |---|----------|--|--|--| | STANDARD TEST RESULT | | | | | | ETSI EN 300 328 _{V2.1.1} :2016 | Complied | | | | The above equipment was tested by International Standards Laboratory for compliance with the requirements set forth in the European Standard ETSI EN 300328 V2.1.1: 2016. under article 3.2 of RE Directive 2014/53/EU. The results of testing in this report apply to the product/system that was tested only. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties. | Test By: | Lake Cheng | Date: | 2017/08/24 | | |--------------|--------------------------------|-------|------------|--| | | Lake Cheng / Engineer | | | | | Prepared By: | Gigi yeh | Date: | 2017/08/24 | | | | Gigi Yeh / Engineer | | | | | Approved By: | Timent Su | Date: | 2017/08/24 | | | • | Vincent Su / Technical Manager | | | | **Report Number: ISL-17LR237E328** ## Version | Version No. | Date | Description | |-------------|------------|------------------------------| | 00 | 2017/08/24 | Initial creation of document | | | | | ## TABLE OF CONTENTS | 1. | DESCRIPTION OF EQUIPMENT UNDER TEST (EUT) | 5 | |----|--|----| | 2. | DESCRIPTION OF TEST MODES | 7 | | 3. | GENERAL DESCRIPTION OF APPLIED STANDARDS | 8 | | 4. | TEST FACILITY | 8 | | 5. | BLOCK DIAGRAM OF TEST SETUP | 9 | | 6. | FREQUENCY HOPPING EQUIPMENT MEASUREMENT (FHSS) | 15 | | 7. | OTHER TYPES OF WIDE BAND MODULATION EQUIPMENT | 29 | | AP | PENDIX 1 PHOTOGRAPHS OF SET UP | 56 | | ۸D | PENDLY 2 PHOTOCDAPHS OF FUT | 50 | ## 1. DESCRIPTION OF EQUIPMENT UNDER TEST (EUT) ## General: | Product Name: | Bluetooth Low Energy (BLE) 5 Module | |-----------------------------|-------------------------------------| | Brand: | FANSTEL | | Model: | BT832; BT832A; BT832F; BT832AF | | Model different: | Please see model summaries table | | Type of Equipment: | Embed Modular | | Temperature Range: | -40°C to + 85°C | | Geo-location capability: | no | | Simultaneous transmissions: | N/A | ## **Model Summaries** | module | BT832 | BT832A | BT832F | BT832AF | |-------------------------|-------------|-------------|---------------|---------------| | MCU | Cortex M4F | Cortex M4 | Cortex M4F | Cortex M4 | | Flash/RAM | 512KB/64KB | 192KB/24KB | 512KB/64KB | 192KB/24KB | | Size | 14x16x1.9mm | 14x16x1.9mm | 15x20.8x1.9mm | 15x20.8x1.9mm | | Average Bluetooth range | 100 meters | 100 meters | 270 meters | 270 meters | | FCC ID | X8WBT832 | | X8WBT832 | | | Canada IC ID | 4100A-BT832 | | 4100A-BT832 | | | Europe | | | | | | QDID | 9798 |) | 97989 |) | ## BT BLE: 1TX/1RX | Bluetooth Version | BT 4.2 (GFSK) | | | |-------------------------------------|--|--------------|--| | Frequency Range: | 2402 – 2480MHz | | | | Channel number: | 40 channels | | | | Modulation type: | GFSK | | | | Transmit Power:
(EIRP) | BT832; BT832A: -4.88dBm
BT832F; BT832AF: 1.32dBm | | | | Dwell Time: | N/A | | | | Operating Mode: | Point-to-Point | | | | Adaptive/ Non-Adaptive
Equipment | Adaptive:Yes | NON-Adaptive | | | Occupied Channel
Bandwidth | Within 2400-2483.5MHz | | | | Duty Cycle | N/A | | | | Antenna Beam forming | No | | | | Antenna Designation: | Revised SMA Type: PCB Antenna BT832; BT832A: -3.38dBi BT832F; BT832AF: 2.82dBi | | | The EUT is compliance with BT4.2 Standard. This test report applies for BT4.2 ## 2. DESCRIPTION OF TEST MODES The EUT has been tested under Operating condition. To control the EUT for staying in continuous transmitting and receiving mode is programmed. BLE: Lowest (2402MHz), Mid (2442MHz) and Highest (2480MHz) mode. #### **Normal test conditions:** Refer to section 5.1.1.2 of EN 300328 Temperature: +15 to 35 Relative humidity: 20 % to 75 % Normal Voltage: 3.3Vdc #### **Extreme test conditions:** Refer to section 5.1.1.3 of EN 300328 Where tests at extreme temperatures are required, measurements shall be made over the extremes of the operating temperature range as declared by the manufacturer. Extreme temperatures: -40° C to $+85^{\circ}$ C ## 3. GENERAL DESCRIPTION OF APPLIED STANDARDS The EUT According to the Specifications, it must comply with the requirements of the following standards: ETSI EN 300 328 V2.1.1: 2016 – Wideband transmission systems; Data transmission equipment operating in the 2,4 GHz ISM band and using wide band modulation techniques; Harmonized Standard covering the essential requirements of article 3.2 of the Directive 2014/53/EU Report Number: ISL-17LR237E328 ## 4. TEST FACILITY International Standards Laboratory <Lung-Tan LAB> No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan A fully anechoic chamber was used for the radiated spurious emissions test. TAF Accreditation Lab. Lab number: 0997 NEMKO Laboratory Authorities No.: ELA 113B ## 5. BLOCK DIAGRAM OF TEST SETUP ## **5.1 EUT Configuration** Fig. 1 Configuration of Tested System **Table 1 Equipment Used in Tested System** | Item | Equipment | Mfr/Brand | Model/
Type No. | Series No. | Data Cable | Power Cord | |------|-----------|-----------|--------------------|------------|------------|--------------| | 1 | Notebook | HP | X440i | N/A | N/A | Non-shielded | | 2 | Test Kit | N/A | N/A | N/A | N/A | N/A | ## 5.2 Test Setup for ERP/EIRP Measurement # 5.2.1 Step 1. Field Strength Measurement OATS or SAR test Site - 1) UUT - 2) Measurement antenna - 3) Measurement equipment ## **FAR Test Site** ## **Step 2. SUBSTITUTION METHOD:** ## 5.4 Test Setup for Extreme test ## 5.5 Test Setup for verifying the adaptivity of an equipment Figure 5: Test set-up for verifying the adaptivity of an equipment ## 5.6 Test Setup for verifying the receiver blocking of an equipment Figure 6: Test Set-up for receiver blocking ## **5.7 Measurement Equipment Used:** | Chamber (1166) | | | | | | |-------------------------------|---------------|------------------------|---------------------|--------------|------------| | EQUIPMENT
TYPE | MFR | MODEL
NUMBER | SERIAL
NUMBER | LAST
CAL. | CAL DUE. | | Spectrum Analyzer 21(26.5GHz) | Agilent | N9010A | MY52100117 | 05/27/2017 | 05/26/2018 | | Dipole antenna | SCHWARZBECK | VHAP,30-300 | 919 | 12/28/2015 | 12/27/2017 | | Dipole antenna | SCHWARZBECK | UHAP,300-100
0 | 1195 | 12/28/2015 | 12/27/2017 | | Loop Antenna | EM | EM-6879 | 271 | 11/01/2016 | 10/31/2018 | | Loop Antenna | A.H.SYSTEM | SAS-564 | 294 | 06/16/2017 | 06/15/2019 | | Bilog Antenna | Schaffner | 9168 | 9168-495 | 09/02/2016 | 09/01/2017 | | Horn antenna1-18G | EM | EM-AH-10180 | 2011090207 | 10/06/2016 | 10/05/2017 | | Horn antenna18-26G | Com-power | AH-826 | 081001 | 07/23/2017 | 07/22/2019 | | Horn antenna26-40G(05) | Com-power | AH-640 | 100A | 02/22/2017 | 02/21/2019 | | Preamplifier9-1.3G | HP | 8447F | NA | 08/31/2016 | 08/30/2017 | | Preamplifier1-26G | EM | EM01M26G | NA | 06/28/2017 | 06/27/2018 | | Preamplifier26-40G | MITEQ | JS4-26004000-
27-5A | 818471 | 07/22/2017 | 07/21/2019 | | Cable | HUBER SUHNER | SUCOFLEX10
4A | 1166 cable 001 | 10/06/2016 | 10/05/2017 | | Cable | HUBER SUHNER | SUCOFLEX10
4A | 1166 cable 002 | 10/06/2016 | 10/05/2017 | | SUCOFLEX
1GHz~40GHz cable | HUBER SUHNER | Sucoflex 102 | 27963/2&3742
1/2 | 11/03/2015 | 11/02/2017 | | Signal Generator | R&S | SMU200A | 102330 | 03/15/2017 | 03/14/2018 | | Signal Generator | Anritsu | MG3692A | 20311 | 11/04/2016 | 11/03/2017 | | 2.4G Filter | Micro-Tronics | Brm50702 | 76 | 12/25/2016 | 12/24/2017 | | Test Software | Audix | E3
Ver:6.12023 | N/A | N/A | N/A | | Conducted Emission Test Site | | | | | | |------------------------------|----------|---------------|------------|--------------|------------| | EQUIPMENT | MFR | MODEL | SERIAL | LAST | CAL DUE. | | TYPE | | NUMBER | NUMBER | CAL. | | | Power Meter 05 | Anritsu | ML2495A | 1116010 | 07/27/2017 | 07/26/2018 | | Power Sensor 05 | Anritsu | MA2411B | 34NKF50 | 07/27/2017 | 07/26/2018 | | Danier Canaar Oc | DARE | RPR3006W | 13I00030SN | 11/02/2016 | 11/02/2017 | | Power Sensor 06 | | | O33 | 11/03/2016 | 11/02/2017 | | D G 07 | DARE | RPR3006W | 13I00030SN | 11/03/2016 | 11/02/2017 | | Power Sensor 07 | | | O34 | | | | Temperature Chamber | KSON | THS-B4H100 | 2287 | 06/27/2017 | 06/26/2018 | | DC Power supply | ABM | 8185D | N/A | 10/06/2016 | 10/05/2017 | | AC Power supply | EXTECH | CFC105W | NA | 12/25/2016 | 12/24/2017 | | Attenuator | Woken |
Watt-65m3502 | 11051601 | NA | NA | | Splitter | MCLI | PS4-199 | 12465 | 12/26/2015 | 12/25/2017 | | Spectrum analyzer | keysight | N9010A | MY56070257 | 05/31/2017 | 05/30/2018 | | | DADE | Radimation | N.Y.A. | N T 4 | . | | Test Sofware | DARE | Ver:2013.1.23 | NA | NA | NA | | Adaptivity/ Receiver Blocking Test Site | | | | | | |---|---------------|---------------|-------------|------------|------------| | EQUIPMENT | MFR | MODEL | SERIAL | LAST | CAL DUE. | | TYPE | | NUMBER | NUMBER | CAL. | | | Signal Generator | Agilent | E4438C | MY49071550 | 09/30/2016 | 09/29/2017 | | Signal Generator | keysight | N5182B | MY53052399 | 03/28/2017 | 03/27/2018 | | Spectrum analyzer | keysight | N9010A | MY56070257 | 05/31/2017 | 05/30/2018 | | AP Router | ASUS | RTAC66U | FTX1220905D | NA | NA | | I Joh A donton | D. Limb | DWA-182 | QBYS1D8000 | NA | NA | | Usb Adapter | D-Link | | 073 | | | | Test Box | keysight | AD211A | NA | NA | NA | | Test Box | keysight | AD191A | NA | NA | NA | | Direction Couliper | Krytar | 1821S | 1461 | NA | NA | | Splitter | Mini-Circuits | ZN2PD-63-S | UU97201111 | NA | NA | | Attenuator | Woken | Watt-65m3502 | 11051601 | NA | NA | | Software | Agilent | Adaptive TEST | NA | NA | NA | | Cable | Draka | NA | NA | NA | NA | | | | N9607B | | | | | Test Software | Keysight | DFS Radar | NA | NA | NA | | | - | Profiles | | | | | Test Software | Keysight | ETSI Standard | NA | NA | NA | | 10st Software | Keysigiii | test system | INA | 11/11 | INA | Report Number: ISL-17LR237E328 ## **6.** Frequency Hopping Equipment Measurement (FHSS) #### 6.1 ETSI EN 300 328 SUB-CLAUSE 4.3.1.2 RF Output Power This requirement applies to all types of Frequency Hopping equipment #### **6.1.1** Limit: Sub-Clause **4.3.1.2.3** The maximum RF output power for adaptive Frequency Hopping equipment shall be equal to or less than 20 dBm. The maximum RF output power for non-adaptive Frequency Hopping equipment, shall be declared by the supplier. The maximum RF output power for this equipment shall be equal to or less than the value declared by the supplier. This declared value shall be equal to or less than 20 dBm. Report Number: ISL-17LR237E328 This limit shall apply for any combination of power level and intended antenna assembly. #### **6.1.2** Test Procedure: See Sub-Clause 5.4.2.1 of ETSI EN 300 328 for the test conditions See Sub-Clause 5.4.2.2 of ETSI EN 300 328 for the test method #### 6.1.3 Test Result: ## 6.2 ETSI EN 300 328 SUB-CLAUSE 4.3.1.3 Duty Cycle, Tx-sequence, Tx-gap These requirements apply to non-adaptive equipment or to adaptive equipment when operating in a non-adaptive mode. The equipment is using wide band modulations other than FHSS. These requirements do not apply for equipment with a maximum declared RF Output power level of less than 10 dBm e.i.r.p. or for equipment when operating in a mode where the RF Output power is less than 10 dBm e.i.r.p. #### **6.2.1** Limit: Sub-Clause **4.3.1.3.3** For non-adaptive FHSS equipment, the Duty Cycle shall be equal to or less than the maximum value declared by the manufacturer. In addition, the maximum Tx-sequence time shall be 5 ms while the minimum Tx-gap time shall be 5 ms. #### **6.2.2** Test Procedure: See Sub-Clause 5.4.2.1 of ETSI EN 300 328 for the test conditions See Sub-Clause 5.4.2.2 of ETSI EN 300 328 for the test method ## 6.2.3 Test Result: N/A, this is adaptive device. # 6.3 ETSI EN 300 328 SUB-CLAUSE 4.3.1.4 Accumulated Transmit Time, Frequency Occupation and Hopping Sequence These requirements apply to all types of frequency hopping equipment #### **6.3.1** Limit: Sub-Clause **4.3.1.4.3** ## Non-adaptive frequency hopping systems The Accumulated Transmit Time on any hopping frequency shall not be greater than 15 ms within any observation period of 15 ms multiplied by the minimum number of hopping frequencies (N) that have to be used. In order for the equipment to comply with the Frequency Occupation requirement, it shall meet either of the following two options: Option 1: Each hopping frequency of the hopping sequence shall be occupied at least once within a period not exceeding four times the product of the dwell time and the number of hopping frequencies in use. Adaptive frequency hopping systems Option 2: The occupation probability for each frequency shall be between ($(1/U) \times 25\%$) and 77% where U is the number of hopping frequencies in use. The hopping sequence(s) shall contain at least N hopping frequencies where N is either 5 or the result of 15 MHz divided by the minimum Hopping Frequency Separation in MHz, whichever is the greater. According to clause 4.3.1.5.3.1 the minimum Hopping Frequency Separation for non-adaptive equipment is equal to the Occupied Channel Bandwidth with a minimum of 100 kHz. #### Adaptive frequency hopping equipment Adaptive Frequency Hopping equipment shall be capable of operating over a minimum of 70 % of the band specified in table 1. The Accumulated Transmit Time on any hopping frequency shall not be greater than 400 ms within any observation period of 400 ms multiplied by the minimum number of hopping frequencies (N) that have to be used. In order for the equipment to comply with the Frequency Occupation requirement, it shall meet either of the following two options: Option 1: Each hopping frequency of the hopping sequence shall be occupied at least once within a period not exceeding four times the product of the dwell time and the number of hopping frequencies in use. Option 2: The occupation probability for each frequency shall be between ($(1/U) \times 25\%$) and 77% where U is the number of hopping frequencies in use. The hopping sequence(s) shall contain at least N hopping frequencies at all times, where N is 15 or 15 divided by the minimum Hopping Frequency Separation in MHz, whichever is the greater. Report Number: ISL-17LR237E328 #### **Other Requirements** For non-Adaptive Frequency Hopping equipment, from the N hopping frequencies defined in clause 4.3.1.4.3.1 above, the equipment shall transmit on at least one hopping frequency while other hopping frequencies are blacklisted. For equipment that blacklists one or more hopping frequencies, these blacklisted frequencies are considered as active transmitting for the calculation of the MU factor of the equipment. See also clause 5.3.2.2.1.3 step 3, second bullet item and clause 5.3.2.2.1.4 step 3, note 2. For Adaptive Frequency Hopping equipment, from the N hopping frequencies defined in clause 4.3.1.4.3.2 above, the equipment shall consider at least one hopping frequency for its transmissions. Providing that there is no interference present on this frequency with a level above the detection threshold defined in clause 4.3.1.7.2.2 point 5 or clause 4.3.1.7.3.2 point 5, then the equipment shall have transmissions on this frequency. For non-Adaptive Frequency Hopping equipment, when not transmitting on a hopping frequency, the equipment has to occupy that frequency for the duration of the typical dwell time (see also definition for blacklisted frequency in clause 3.1). For Adaptive Frequency Hopping equipment using LBT based DAA, if a signal is detected during the CCA, the equipment may jump immediately to the next frequency in the hopping sequence (see clause 4.3.1.7.2.2 point 2) provided the limit for maximum dwell is respected. Report Number: ISL-17LR237E328 #### **6.3.2** Test Procedure: See Sub-Clause 5.4.4.1 of ETSI EN 300 328 for the test conditions See Sub-Clause 5.4.4.2 of ETSI EN 300 328 for conducted method. #### **6.3.3** Test Result: ## 6.4 ETSI EN 300 328 SUB-CLAUSE 4.3.1.5 Hopping Frequency Separation This requirement applies to all types of frequency hopping equipment. #### **6.4.1** Limit: Sub-Clause **4.3.1.5.3** ## Non-adaptive frequency hopping systems For non-adaptive Frequency Hopping equipment, the Hopping Frequency Separation shall be equal or greater than the Occupied Channel Bandwidth (see clause 4.3.1.8), with a minimum separation of 100 kHz. For equipment with a maximum declared RF Output power level of less than 10 dBm e.i.r.p. or for non-adaptive Frequency Hopping equipment operating in a mode where the RF Output power is less than 10 dBm e.i.r.p. only the minimum Hopping Frequency Separation of 100 kHz applies. #### Adaptive frequency hopping systems The minimum Hopping Frequency Separation shall be 100 kHz. Adaptive Frequency Hopping equipment, which for one or more hopping frequencies, has switched to a non-adaptive mode because interference was detected on all these hopping positions with a level above the threshold level defined in clause 4.3.1.7.2.2 or clause 4.3.1.7.3.2, is allowed to continue to operate with a minimum Hopping Frequency Separation of 100 kHz on these hopping frequencies as long as the interference is present on these frequencies. The equipment shall continue to operate in an adaptive mode on other hopping frequencies. Adaptive Frequency Hopping equipment which decided to operate in a non-adaptive mode on one or more hopping frequencies without the presence of interference, shall comply with the limit in clause 4.3.1.5.3.1 for these hopping frequencies as well as with all other requirements applicable to non-adaptive frequency hopping equipment. Report Number: ISL-17LR237E328 #### **6.4.2** Test Procedure: See Sub-Clause 5.4.5.1 of ETSI EN 300 328 for the test conditions See Sub-Clause 5.4.5.2 of ETSI EN 300 328 for conducted method. #### **6.4.3** Test Result: ## 6.5 ETSI EN 300 328 SUB-CLAUSE 4.3.1.6 Medium Utilisation (MU) factor This requirement does not apply to adaptive equipment unless operating in a non-adaptive mode. In addition, this requirement does not apply for equipment with a maximum declared RF Output power level of less than 10 dBm e.i.r.p. or for equipment when operating in a mode where the RF Output power is less than 10 dBm e.i.r.p. #### 6.5.1 Limit: Sub-Clause 4.3.1.6.3 The maximum Medium Utilisation
factor for non-adaptive Frequency Hopping equipment shall be 10 %. The Medium Utilisation (MU) factor is a measure to quantify the amount of resources (Power and Time) used by non-adaptive equipment. The Medium Utilisation factor is defined by the formula: Report Number: ISL-17LR237E328 $MU = (P/100 \text{ mW}) \times DC$, where: MU is Medium Utilisation factor in %. P is the RF output power as defined in clause 4.3.1.1.1 expressed in mW. DC is the Duty Cycle as defined in clause 4.3.1.2.1 expressed in %. #### **6.5.2** Test Procedure: See Sub-Clause 5.4.2.1 of ETSI EN 300 328 for the test conditions See Sub-Clause 5.4.2.2 of ETSI EN 300 328 for conducted method. #### 6.5.3 Test Result: N/A, RF Output power level of less than 10 dBm e.i.r.p. ## 6.6 ETSI EN 300 328 SUB-CLAUSE 4.3.1.7 Adaptivity (Adaptive Frequency Hopping) This requirement does not apply to non-adaptive equipment or adaptive equipment operating in a non-adaptive mode providing the equipment complies with the requirements and/or restrictions applicable to non-adaptive equipment. In addition, this requirement does not apply for equipment with a maximum declared RF Output power level of less than 10 dBm e.i.r.p. or for equipment when operating in a mode where the RF Output power is less than 10 dBm e.i.r.p. Adaptive Frequency Hopping equipment is allowed to operate in a non-adaptive mode providing it complies with the requirements applicable to non-adaptive frequency hopping equipment. See also clause 4.3.1.5.3.2. Adaptive Frequency Hopping equipment is allowed to have Short Control Signalling Transmissions (e.g. ACK/NACK signals, etc.) without sensing the frequency for the presence of other signals. See clause 4.3.1.7.4. Adaptive Frequency Hopping (AFH) equipment uses a Detect And Avoid (DAA) mechanism which allows an equipment to adapt to its radio environment by identifying frequencies that are being used by other equipment. Adaptive Frequency Hopping equipment shall implement either of the DAA mechanisms provided in clause 4.3.1.7.2 or clause 4.3.1.7.3. Adaptive equipment is allowed to switch dynamically between different adaptive modes. #### 6.6.1 Limit: ETSI EN 300 328 SUB-CLAUSE 4.3.1.7.2 Adaptive Frequency Hopping using LBT based DAA Refer to section ETSI EN 300 328 SUB-CLAUSE 4.3.1.7.2.2 Requirements & Limits ETSI EN 300 328 SUB-CLAUSE 4.3.1.7.3 Adaptive Frequency Hopping using other forms of DAA (non-LBT based) Refer to section ETSI EN 300 328 SUB-CLAUSE 4.3.1.7.3.2 Requirements & Limits ETSI EN 300 328 SUB-CLAUSE 4.3.1.7.4 Short Control Signaling Transmissions Refer to section ETSI EN 300 328 SUB-CLAUSE 4.3.1.7.4.2 Requirements & Limits Report Number: ISL-17LR237E328 #### **6.6.2** Test Procedure: See Sub-Clause 5.4.6.1 of ETSI EN 300 328 for the test conditions See Sub-Clause 5.4.6.2 of ETSI EN 300 328 for conducted method. #### 6.6.3 Test Result: N/A, the RF Output power level of less than 10 dBm e.i.r.p ## 6.7 ETSI EN 300 328 SUB-CLAUSE 4.3.1.8 Occupied Channel Bandwidth This requirement applies to all types of frequency hopping equipment #### **6.7.1** Limit: Sub-Clause **4.3.1.8.3** The Occupied Channel Bandwidth for each hopping frequency shall fall completely within the band given in table 1. For non-adaptive Frequency Hopping equipment with e.i.r.p. greater than 10 dBm, the Occupied Channel Bandwidth for every occupied hopping frequency shall be equal to or less than the Nominal Channel Bandwidth declared by the manufacturer. See clause 5.4.1 j). This declared value shall not be greater than 5 MHz. #### **6.7.2** Test Procedure: See Sub-Clause 5.4.7.1 of ETSI EN 300 328 for the test conditions See Sub-Clause 5.4.7.2 of ETSI EN 300 328 for conducted method. #### **6.7.3** Test Result: # 6.8 ETSI EN 300 328 SUB-CLAUSE 4.3.1.9 Transmitter Unwanted Emissions in the out-of-band Domain This requirement applies to all types of frequency hopping equipment ## **6.8.1** Limit: Sub-Clause **4.3.1.9.3** The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in figure 1. Within the band specified in table 1, the Out-of-band emissions are fulfilled by compliance with the Occupied Channel Bandwidth requirement in clause 4.3.1.8. **Transmit mask** #### **6.8.2** Test Procedure: Conducted test method See Sub-Clause 5.4.8.1 of ETSI EN 300 328 for the test conditions See Sub-Clause 5.4.8.2 of ETSI EN 300 328 for conducted method. #### **6.8.3** Test Result: # 6.9 ETSI EN 300 328 SUB-CLAUSE 4.3.1.10 Transmitter Unwanted Emissions in the Spurious Domain This requirement applies to all types of frequency hopping equipment. #### 6.9.1 Limit: Sub-Clause 4.3.1.10.3 The transmitter unwanted emissions in the spurious domain shall not exceed the values given in table In case of equipment with antenna connectors, these limits apply to emissions at the antenna port (conducted). For emissions radiated by the cabinet or emissions radiated by integral antenna equipment (without antenna connectors), these limits are e.r.p. for emissions up to 1 GHz and e.i.r.p. for emissions above 1 GHz. Table 12: Transmitter limits for spurious emissions | Frequency range | Maximum power | Bandwidth | |---------------------|---------------|-----------| | 30 MHz to 47 MHz | -36 dBm | 100 kHz | | 47 MHz to 74 MHz | -54 dBm | 100 kHz | | 74 MHz to 87,5 MHz | -36 dBm | 100 kHz | | 87,5 MHz to 118 MHz | -54 dBm | 100 kHz | | 118 MHz to 174 MHz | -36 dBm | 100 kHz | | 174 MHz to 230 MHz | -54 dBm | 100 kHz | | 230 MHz to 470 MHz | -36 dBm | 100 kHz | | 470 MHz to 862 MHz | -54 dBm | 100 kHz | | 862 MHz to 1 GHz | -36 dBm | 100 kHz | | 1 GHz to 12,75 GHz | -30 dBm | 1 MHz | #### **6.9.2** Test Procedure: See Sub-Clause 5.4.9.1 of ETSI EN 300 328 for the test conditions See Sub-Clause 5.4.9.2 and 5.4.9.2.2 of ETSI EN 300 328 for Conducted Pre-Scan test method. See Sub-Clause 5.4.9.2.2 of ETSI EN 300 328 for final Radiated test method. #### 6.9.3 Test Result: Radiated (The Worst Case situation with respect to output power) ## 6.10 ETSI EN 300 328 SUB-CLAUSE 4.3.1.11 Receiver Spurious Emissions This requirement applies to all types of frequency hopping equipment. #### 6.10.1 Limit: Sub-Clause 4.3.1.11.3 The spurious emissions of the receiver shall not exceed the values given in table. In case of equipment with antenna connectors, these limits apply to emissions at the antenna port (conducted). For emissions radiated by the cabinet or emissions radiated by integral antenna equipment (without antenna connectors), these limits are e.r.p. for emissions up to 1 GHz and e.i.r.p. for emissions above 1 GHz. Table 13: Spurious emission limits for receivers | Frequency range | Maximum power | Measurement bandwidth | |--------------------|---------------|-----------------------| | 30 MHz to 1 GHz | -57 dBm | 100 kHz | | 1 GHz to 12,75 GHz | -47 dBm | 1 MHz | #### **6.10.2** Test Procedure: See Sub-Clause 5.4.10.1 of ETSI EN 300 328 for the test conditions See Sub-Clause 5.4.10.2 and 5.4.10.2.2 of ETSI EN 300 328 for Conducted Pre-Scan test method. See Sub-Clause 5.4.10.2.2 of ETSI EN 300 328 for final Radiated test method. #### 6.10.3 Test Result #### 6.11 ETSI EN 300 328 SUB-CLAUSE 4.3.1.12 Receiver Blocking This requirement applies to all receiver categories below. ## Receiver categories #### Receiver category 1 Adaptive equipment with a maximum RF output power greater than 10 dBm e.i.r.p. shall be considered as receiver category 1 equipment. #### Receiver category 2 Non-adaptive equipment with a Medium Utilization (MU) factor greater than 1 % and less than or equal to 10 % or adaptive equipment with a maximum RF output power of 10 dBm e.i.r.p. shall be considered as receiver category 2 equipment. #### Receiver category 3 Non-adaptive equipment with a maximum Medium Utilization (MU) factor of 1 % or adaptive equipment with a maximum RF output power of 0 dBm e.i.r.p. shall be considered as receiver category 3 equipment. #### 6.11.1 Limit: Sub-Clause 4.3.1.12.4 While maintaining the minimum performance criteria as defined in clause 4.3.1.12.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 6, table 7 or table 8. Table 6: Receiver Blocking parameters for Receiver Category 1 equipment | Wanted signal mean
power from companion
device (dBm) | Blocking signal
frequency
(MHz) | Blocking
signal power
(dBm)
(see note 2) | Type of blocking
signal | |--|--|---|----------------------------| | P _{min} + 6 dB | 2 380
2 503,5 | -53 | cw | | P _{min} + 6 dB | 2 300
2 330
2 360 | -47 | cw | | P _{min} + 6 dB | 2 523,5
2 553,5
2 583,5
2 613,5
2 643,5
2 673,5 | -47 | cw | NOTE 1: P_{min} is the minimum level of wanted signal (in dBm) required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal. NOTE 2: The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the levels have to be corrected by the actual antenna assembly gain. Table 7: Receiver Blocking parameters receiver category 2 equipment | Wanted signal mean
power from companion
device (dBm) | Blocking signal
frequency
(MHz) | Blocking
signal power
(dBm)
(see note 2) | Type of blocking
signal | |--|---------------------------------------|---|----------------------------| | P _{min} + 6 dB | 2 380
2 503,5 | -57 | cw | | P _{min} + 6 dB | 2 300
2 583,5 | -47 | cw | NOTE 1: P_{min} is the minimum level of the wanted signal (in dBm) required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the
absence of any blocking signal. NOTE 2: The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the levels have to be corrected by the actual antenna assembly gain. Table 8: Receiver Blocking parameters receiver category 3 equipment | Wanted signal mean
power from companion
device (dBm) | Blocking signal
frequency
(MHz) | Blocking
signal power
(dBm)
(see note 2) | Type of blocking
signal | |--|---------------------------------------|---|----------------------------| | P _{min} + 12 dB | 2 380
2 503,5 | -57 | CW | | P _{min} + 12 dB | 2 300
2 583,5 | -47 | cw | NOTE 1: P_{min} is the minimum level of the wanted signal (in dBm) required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal. NOTE 2: The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the levels have to be corrected by the actual antenna assembly gain. #### **6.11.2** Test Procedure: See Sub-Clause 5.4.11.1 of ETSI EN 300 328 for the test conditions See Sub-Clause 5.4.11.2 of ETSI EN 300 328 for conducted method. #### **6.11.3** Test Result: #### 6.12 ETSI EN 300 328 SUB-CLAUSE 4.3.1.13 Geo-location capability This requirement only applies to equipment with geo-location capability as defined in ETSI EN 300 328 clause 4.3.1.13.2 below Geo-location capability is a feature of the equipment to determine its geographical location with the purpose to configure itself according to the regulatory requirements applicable at the geographical location where it operates. The geo-location capability may be present in the equipment or in an external device (temporary) associated with the equipment operating at the same geographical location during the initial power up of the equipment. The geographical location may also be available in equipment already installed and operating at the same geographical location. #### **6.12.1** Requirement: Sub-Clause **4.3.1.13.3** The geographical location determined by the equipment as defined in clause 4.3.2.13.2 shall not be accessible to the user. ## **6.12.2** Result: N/A, the device doesn't have Geo-location capability. ## 7. Other Types of Wide Band Modulation Equipment #### 7.1 ETSI EN 300 328 SUB-CLAUSE 4.3.2.2 RF Output Power This requirement applies to all types of equipment using wide band modulations other than FHSS. #### 7.1.1 Limit: Sub-Clause 4.3.2.2.3 For adaptive equipment using wide band modulations other than FHSS, the maximum RF output power shall be 20 dBm. The maximum RF output power for non-adaptive equipment shall be declared by the supplier and shall not exceed 20 dBm. See clause 5.3.1 m). For non-adaptive equipment using wide band modulations other than FHSS, the maximum RF output power shall be equal to or less than the value declared by the supplier. This limit shall apply for any combination of power level and intended antenna assembly. #### 7.1.2 Test Procedure: See Sub-Clause 5.4.2.1 of ETSI EN 300 328 for the test conditions See Sub-Clause 5.4.2.2 of ETSI EN 300 328 for the test method ## 7.1.3 Test Result: Ambient temperature: 25 Relative humidity: 60% Test Date: 2017/08/21 Test Mode: BT LE: BT832F; BT832AF Pburst values (value "A" in dBm) antenna assembly gain "G" in dBi beamforming gain "Y" in dB Cable Loss= 21.00 dB | | TRANSMITTER POWER (dBm) | | | | | | | | | |-------------------------|-------------------------|--------|------|-----------|-----------|------|---------|--------|------| | TEST CONDITIONS | | | | | | | | | | | | Lowest | Frequ | ency | Middle | Frequ | ency | Highest | Frequ | ency | | | P | -1.28 | dBm | P | -0.78 | dBm | P | -0.98 | dBm | | Temp -40 °C | A | -4.10 | dBm | A | -3.60 | dBm | A | -3.80 | dBm | | | Reading | -24.60 | dBm | Reading | -24.10 | dBm | Reading | -24.30 | dBm | | | P | -0.48 | dBm | P | -0.08 | dBm | P | -0.18 | dBm | | Temp 25 °C | A | -3.30 | dBm | A | -2.90 | dBm | A | -3.00 | dBm | | | Reading | -23.80 | dBm | Reading | -23.40 | dBm | Reading | -23.50 | dBm | | | P | 1.02 | dBm | P | 1.22 | dBm | P | 1.32 | dBm | | Temp 85 °C | A | -1.80 | dBm | A | -1.60 | dBm | A | -1.50 | dBm | | | Reading | -22.30 | dBm | Reading | -22.10 | dBm | Reading | -22.00 | dBm | | Limit(P) | | 20dBm | | | | | | | | | Measurement uncertainty | | | | + 0.28 dI | 3 / - 0.3 | 30dB | | | | Test Mode: BT LE: BT832; BT832A Pburst values (value "A" in dBm) antenna assembly gain "G" in dBi beamforming gain "Y" in dB Cable Loss= | | TRANSMITTER POWER (dBm) | | | | | | | | | |-------------------------|-------------------------|--------|------|----------|-----------|------|---------|--------|------| | TEST CONDITIONS | | | | | | | | | | | | Lowest | Frequ | ency | Middle | Frequ | ency | Highest | Frequ | ency | | | P | -7.48 | dBm | P | -6.98 | dBm | P | -7.18 | dBm | | Temp -40 °C | A | -4.10 | dBm | A | -3.60 | dBm | A | -3.80 | dBm | | | Reading | -24.60 | dBm | Reading | -24.10 | dBm | Reading | -24.30 | dBm | | | P | -6.68 | dBm | P | -6.28 | dBm | P | -6.38 | dBm | | Temp 25 °C | A | -3.30 | dBm | A | -2.90 | dBm | A | -3.00 | dBm | | 10mp 25 C | | -23.80 | | | | | | | | | | Reading | | dBm | Reading | -23.40 | dBm | Reading | -23.50 | dBm | | | P | -5.18 | dBm | P | -4.98 | dBm | P | -4.88 | dBm | | Temp 85 °C | A | -1.80 | dBm | A | -1.60 | dBm | A | -1.50 | dBm | | | Reading | -22.30 | dBm | Reading | -22.10 | dBm | Reading | -22.00 | dBm | | Limit(P) | | | | 20 |)dBm | | | | | | Measurement uncertainty | | | | + 0.28dI | 3 / - 0.3 | 30dB | | | | -3.38 dBi 0.00 dB 21.00 dB ## 7.2 ETSI EN 300 328 SUB-CLAUSE 4.3.2.3 Power Spectral Density This requirement applies to all types of equipment using wide band modulations other than FHSS. ## **6.12.3** Limit: Sub-Clause **4.3.2.3.3** For equipment using wide band modulations other than FHSS, the maximum Power Spectral Density is limited to 10 dBm per MHz. #### 7.2.1 Test Procedure: See Sub-Clause 5.4.3.1 of ETSI EN 300 328 for the test conditions See Sub-Clause 5.4.3.2 of ETSI EN 300 328 for the test method ## 7.2.2 Test Result: Ambient temperature: 25 Relative humidity: 60% Test Date: 2017/08/21 Test Mode: LE:BT832F; BT832AF measured power density Reading (value "A" in dBm) | antenna assembly gain "G" in dBi | 2.82 | dBi | |----------------------------------|------|-----| | beamforming gain "Y" in dB | 0.00 | dB | | Cable Loss= | 1.00 | dB | Maximum Power Spectrum Density =A+G+Y | | Power Density Measurement | | | | | |--------------------------------|---------------------------|--------------------|---------------------|--|--| | TEST CONDITIONS | Ch Low
dBm/1MHz | Ch Mid
dBm/1MHz | Ch High
dBm/1MHz | | | | Measured power density Reading | -2.19 | -1.92 | -1.83 | | | | Maximum Power Spectrum Density | 1.63 | 1.90 | 1.99 | | | | Limit | 10 dBm/1MHz | | | | | | Measurement Uncertainty | + 1.5dB/ - 1.4dB | | | | | Test Mode: LE: BT832; BT832A measured power density Reading (value "A" in dBm) | antenna assembly gain "G" in dBi | -3.38 | dBi | |----------------------------------|-------|-----| | beamforming gain "Y" in dB | 0.00 | dB | | Cable Loss= | 1.00 | dB | Maximum Power Spectrum Density =A+G+Y | | Power Density Measurement | | | | | |--------------------------------|---------------------------|--------------------|---------------------|--|--| | TEST CONDITIONS | Ch Low
dBm/1MHz | Ch Mid
dBm/1MHz | Ch High
dBm/1MHz | | | | Measured power density Reading | -2.19 | -1.92 | -1.83 | | | | Maximum Power Spectrum Density | -4.57 | -4.30 | -4.21 | | | | Limit | 10 dBm/1MHz | | | | | | Measurement Uncertainty | + 1.5dB/ - 1.4dB | | | | | #### 7.3 ETSI EN 300 328 SUB-CLAUSE 4.3.2.4 Duty Cycle, Tx-sequence, Tx-gap These requirements apply to non-adaptive equipment or to adaptive equipment when operating in a non-adaptive mode. The equipment is using wide band modulations other than FHSS. These requirements do not apply for equipment with a maximum declared RF Output power level of less than 10 dBm e.i.r.p. or for equipment when operating in a mode where the RF Output power is less than 10 dBm e.i.r.p. #### 7.3.1 Limit: Sub-Clause 4.3.2.4.3 The Duty Cycle shall be equal to or less than the maximum value declared by the supplier. The Tx-sequence time shall be equal to or less than 10 ms. The minimum Tx-gap time following a Tx-sequence shall be equal to the duration of that proceeding Tx-sequence with a minimum of 3,5 ms. #### 7.3.2 Test Procedure: See Sub-Clause 5.4.2.1 of ETSI EN 300 328 for the test conditions See Sub-Clause 5.4.2.2 of ETSI EN 300 328 for conducted method. #### 7.3.3 Test Result: N/A, this is adaptive device without non-adaptive mode. #### 7.4 ETSI EN 300 328 SUB-CLAUSE 4.3.2.5 Medium Utilization (MU) factor This requirement does not apply to adaptive equipment unless operating in a non-adaptive mode. In addition, this requirement does not apply for equipment with a maximum declared RF Output power level of less than 10 dBm e.i.r.p. or for equipment when operating in a mode where the RF Output power is less than 10 dBm e.i.r.p. #### 7.4.1 Limit: Sub-Clause 4.3.2.5.3 For non-adaptive equipment using wide band modulations other than FHSS, the maximum Medium Utilisation factor shall be 10 %. The Medium Utilisation (MU) factor is a measure to quantify the amount of resources (Power and Time) used by non-adaptive equipment. The Medium Utilisation factor is defined by the formula: Report Number: ISL-17LR237E328 $MU = (P/100 \text{ mW}) \times DC$, where: MU is Medium Utilisation factor in %. P is the RF output power as defined in clause 4.3.1.1.1 expressed in mW. DC is the Duty Cycle as defined in clause 4.3.1.2.1 expressed in %. #### 7.4.2 Test Procedure: See Sub-Clause 5.4.5.1 of ETSI EN 300 328 for the test conditions See Sub-Clause 5.4.5.2 of ETSI EN 300 328 for conducted method. #### 7.4.3 Test Result: N/A, this is adaptive
device without non-adaptive mode. # 7.5 ETSI EN 300 328 SUB-CLAUSE 4.3.2.6 Adaptivity (Adaptive Equipment Using Modulations Other Than FHSS) This requirement does not apply to non-adaptive equipment or adaptive equipment operating in a non-adaptive mode providing the equipment complies with the requirements and/or restrictions applicable to non-adaptive equipment. In addition, this requirement does not apply for equipment with a maximum declared RF Output power level of less than 10 dBm e.i.r.p. or for equipment when operating in a mode where the RF Output power is less than 10 dBm e.i.r.p. Adaptive equipment using modulations other than FHSS is allowed to operate in a non-adaptive mode providing it complies with the requirements applicable to non-adaptive equipment. An adaptive equipment using modulations other than FHSS is equipment that uses a mechanism by which it can adapt to its radio environment by identifying other transmissions present within its Occupied Channel Bandwidth. Adaptive equipment using modulations other than FHSS shall implement either of the Detect and Avoid mechanisms provided in clause 4.3.2.6.2 or clause 4.3.2.6.3. Adaptive equipment is allowed to switch dynamically between different adaptive modes. #### 7.5.1 Requirements & Limit: **Frame Based Equipment:** refer to ETSI EN 300 328 SUB-CLAUSE 4.3.2.6.2.2 Requirements & Limits $$TL = -70 \text{ dBm/MHz} + 10 \times \log_{10} (100 \text{ mW / Pout})$$ (Pout in mW e.i.r.p.) Table 9: Unwanted Signal parameters | Wanted signal mean power from companion device | | Unwanted signal frequency | Unwanted CW
signal power (dBm) | | |--|-------|---------------------------|-----------------------------------|--| | | (dBm) | (MHz) | | | | | -30 | 2 395 or 2 488,5 | -35 | | | | -50 | (see note 1) | (see note 2) | | | NOTE 1: The highest frequency shall be used for testing operating channels within the range 2 400 MHz to 2 442 MHz, while the lowest frequency shall be used for testing operating channels within the range 2 442 MHz to 2 483,5 MHz. See clause 5.4.6.1. | | | | | | NOTE 2: | | | | | **Load Based Equipment:** refer to ETSI EN 300 328 SUB-CLAUSE 4.3.2.6.3.2.3 Requirements & Limits $TL = -70 \text{ dBm/MHz} + 10 \times \log_{10} (100 \text{ mW / Pout})$ (Pout in mW e.i.r.p.) Table 10: Unwanted Signal parameters | Wanted signal mean power from companion device | | Unwanted signal
frequency
(MHz) | Unwanted signal power (dBm) | |--|---|---------------------------------------|-----------------------------| | sufficient t | o maintain the link | 2 395 or 2 488,5 | -35 | | (s | ee note 2) | (see note 1) | (see note 3) | | NOTE 1: | OTE 1: The highest frequency shall be used for testing operating channels within the range 2 400 MHz to 2 442 MHz, while the lowest frequency shall be used for testing operating channels within the range 2 442 MHz to 2 483,5 MHz. See clause 5.4.6.1. | | | | NOTE 2:
NOTE 3: | 71 | | | **Short Control Signaling** Transmissions: refer to ETSI EN 300 328 SUB-CLAUSE 4.3.2.6.4 Limits If implemented, Short Control Signalling Transmissions of adaptive equipment using wide band modulations other than FHSS shall have a maximum TxOn / (TxOn + TxOff) ratio of 10 % within any observation period of 50 ms. NOTE: Duty Cycle is defined in clause 4.3.2.4.2. #### 7.5.2 Test Procedure: See Sub-Clause 5.4.6.1 of ETSI EN 300 328 for the test conditions See Sub-Clause 5.4.6.2 of ETSI EN 300 328 for conducted method. 7.5.3 **Test Result:** N/A ## 7.6 ETSI EN 300 328 SUB-CLAUSE 4.3.2.7 Occupied Channel Bandwidth This requirement applies to all types of equipment using wide band modulations other than FHSS. #### 7.6.1 Limit: Sub-Clause 4.3.2.7.3 The Occupied Channel Bandwidth shall fall completely within the band given in clause 1. In addition, for non-adaptive systems using wide band modulations other than FHSS and with e.i.r.p greater than 10 dBm, the occupied channel bandwidth shall be less than 20 MHz. #### 7.6.2 Test Procedure: See Sub-Clause 5.4.7.1 of ETSI EN 300 328 for the test conditions See Sub-Clause 5.4.7.2 of ETSI EN 300 328 for conducted method. # **7.6.3** Test Result : Ambient temperature: 25 Relative humidity: 60% Test Date: 2017/08/21 # BT LE (BT832; BT832A) | Occupied Channel Bandwidth | | | | | | |--------------------------------|-----------------|-----------------|--|--|--| | Channel Low Channel High | | | | | | | Occupied Bandwidth (MHz) | 1.79 1.82 | | | | | | Lowest/Highest Frequency (MHz) | 2401.1420 | 2480.9420 | | | | | Limit (Operating in the band) | 2400~2483.5 MHz | 2400~2483.5 MHz | | | | | Measurement Uncertainty | ty +/- 120kHz | | | | | #### **BT LE (BT832F: BT832AF)** | DI EE (DIOSEL) | | | | | | |------------------------------------|-----------------|-----------------|--|--|--| | Occupied Channel Bandwidth | | | | | | | Channel Low Channel High | | | | | | | Occupied Bandwidth (MHz) | 1.79 1.82 | | | | | | Lowest/Highest Frequency (MHz) | 2401.1420 | 2480.9420 | | | | | Limit (Operating in the band) | 2400~2483.5 MHz | 2400~2483.5 MHz | | | | | Measurement Uncertainty +/- 120kHz | | | | | | # 7.7 ETSI EN 300 328 SUB-CLAUSE 4.3.2.8 Transmitter Unwanted Emissions in the out-of-band Domain This requirement applies to all types of equipment using wide band modulations other than FHSS. #### 7.7.1 Limit: Sub-Clause 4.3.2.8.3 The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in figure 3. Within the band specified in table 1, the Out-of-band emissions are fulfilled by compliance with the Occupied Channel Bandwidth requirement in clause 4.3.2.7. Transmit mask #### 7.7.2 Test Procedure: Conducted test method See Sub-Clause 5.4.8.1 of ETSI EN 300 328 for the test conditions See Sub-Clause 5.4.8.2 of ETSI EN 300 328 for conducted method. # 7.7.3 Test Result: Ambient temperature: 25 Relative humidity: 60% Test Date: 2017/08/21 # **BT LE (BT832F; BT832AF)** antenna assembly gain "G" in dBi beamforming gain "Y" in dB Cable Loss= 2.82 dBi 0 dB 2.82 dBi | Cubic Loss— | | | | 20.5 dD | |-----------------------------|---------|-----------|-----------|-------------| | Out of Band Domain Emission | | | | | | T | 2400 ~ | 2400-BW ~ | 2483.5 ~ | 2483.5+BW ~ | | Test condition | 2400-BW | 2400-2BW | 2483.5+BW | 2483.5+2BW | | Temp -40 °C | -45.22 | -51.52 | -40.14 | -51.45 | | Temp 25 °C | -44.29 | -49.66 | -40.27 | -52.64 | | Temp 85 °C | -29.24 | -44.22 | -21.54 | -34.28 | | Limit(dBm/MHz) | -10 | -20 | -10 | -20 | ## BT LE (BT832; BT832A) antenna assembly gain "G" in dBi beamforming gain "Y" in dB Cable Loss= -3.38 dBi 0 dB 20.5 dB | 20.0 02 | | | | | |-----------------------------|---------|-----------|-----------|-------------| | Out of Band Domain Emission | | | | | | Test condition | 2400 ~ | 2400-BW ~ | 2483.5 ~ | 2483.5+BW ~ | | Test condition | 2400-BW | 2400-2BW | 2483.5+BW | 2483.5+2BW | | Temp -40 °C | -45.31 | -52.38 | -39.22 | -52.13 | | Temp 25 °C | -44.37 | -51.37 | -38.38 | -50.43 | | Temp 85 °C | -30.14 | -44.26 | -24.83 | -36.36 | | Limit(dBm/MHz) | -10 | -20 | -10 | -20 | # 7.8 ETSI EN 300 328 SUB-CLAUSE 4.3.2.9 Transmitter Unwanted Emissions in the Spurious Domain This requirement applies to all types of equipment using wide band modulations other than FHSS. #### 7.8.1 Limit: Sub-Clause 4.3.2.9.3 The transmitter unwanted emissions in the spurious domain shall not exceed the values given in table In case of equipment with antenna connectors, these limits apply to emissions at the antenna port (conducted). For emissions radiated by the cabinet or emissions radiated by integral antenna equipment (without antenna connectors), these limits are e.r.p. for emissions up to 1 GHz and e.i.r.p. for emissions above 1 GHz. Table 12: Transmitter limits for spurious emissions | Frequency range | Maximum power | Bandwidth | |---------------------|---------------|-----------| | 30 MHz to 47 MHz | -36 dBm | 100 kHz | | 47 MHz to 74 MHz | -54 dBm | 100 kHz | | 74 MHz to 87,5 MHz | -36 dBm | 100 kHz | | 87,5 MHz to 118 MHz | -54 dBm | 100 kHz | | 118 MHz to 174 MHz | -36 dBm | 100 kHz | | 174 MHz to 230 MHz | -54 dBm | 100 kHz | | 230 MHz to 470 MHz | -36 dBm | 100 kHz | | 470 MHz to 862 MHz | -54 dBm | 100 kHz | | 862 MHz to 1 GHz | -36 dBm | 100 kHz | | 1 GHz to 12,75 GHz | -30 dBm | 1 MHz | #### 7.8.2 Test Procedure: See Sub-Clause 5.4.9.1 of ETSI EN 300 328 for the test conditions See Sub-Clause 5.4.9.2 and 5.4.9.2.2 of ETSI EN 300 328 for Conducted Pre-Scan test method. See Sub-Clause 5.4.9.2.2 of ETSI EN 300 328 for final Radiated test method. **7.8.3** Test Result: BT832F; BT832AF **Test Mode: BT BLE, TX CH Low** Ambient temperature: 25 Relative humidity: 60% Test Date: 2017/08/21 | No | Freq | Reading | Aux | Level | Limit | Over
Limit | Pol | |----|---------|---------|-------|--------|--------|---------------|------------| | | MHz | dBm | dB | dBm | dBm | dB | V/H | | 1 | 82.38 | -72.29 | 1.14 | -71.15 | -36.00 | -35.15 | VERTICAL | | 2 | 191.99 | -70.15 | 2.23 | -67.92 | -54.00 | -13.92 | VERTICAL | | 3 | 285.11 | -73.55 | 4.43 | -69.12 | -36.00 | -33.12 | VERTICAL | | 4 | 440.31 | -78.86 | 8.51 | -70.35 | -36.00 | -34.35 | VERTICAL | | 5 | 676.99 | -81.19 | 13.07 | -68.12 | -54.00 | -14.12 | VERTICAL | | 6 | 813.76 | -81.00 | 13.83 | -67.17 | -54.00 | -13.17 | VERTICAL | | 7 | 1994.00 | -61.61 | 4.60 | -57.01 | -30.00 | -27.01 | VERTICAL | | 8 | 4804.00 | -75.28 | 15.71 | -59.57
| -30.00 | -29.57 | VERTICAL | | | | | | | | | | | 1 | 106.63 | -64.66 | 1.11 | -63.55 | -54.00 | -9.55 | HORIZONTAL | | 2 | 197.81 | -74.52 | 1.36 | -73.16 | -54.00 | -19.16 | HORIZONTAL | | 3 | 499.48 | -77.12 | 8.42 | -68.70 | -54.00 | -14.70 | HORIZONTAL | | 4 | 588.72 | -81.13 | 10.97 | -70.16 | -54.00 | -16.16 | HORIZONTAL | | 5 | 731.31 | -82.46 | 13.64 | -68.82 | -54.00 | -14.82 | HORIZONTAL | | 6 | 833.16 | -81.76 | 14.70 | -67.06 | -54.00 | -13.06 | HORIZONTAL | | 7 | 4804.00 | -70.08 | 15.71 | -54.37 | -30.00 | -24.37 | HORIZONTAL | | 8 | 6817.00 | -78.96 | 21.07 | -57.89 | -30.00 | -27.89 | HORIZONTAL | | | 30MHz - 80MHz: 5.04dB | |-------------------------|------------------------| | Measurement uncertainty | 80MHz -1000MHz: 3.76dB | | | 1GHz - 26GHz: 4.45dB | - 1. The emission behaviors belong to narrowband spurious emission. - 2. Remark "--- " means that the emission level is too low to be measured - 3. The result basic equation calculation is as follows: - 4. ERP/EIRP (dBm) = SG Setting(dBm) + Antenna Gain (dB/dBi) Cable loss (dB) - 5. Measurement Range upto 12.75GHz. Test Mode: BT BLE, TX CH High Ambient temperature: 25 Relative humidity: 60% Test Date: 2017/08/21 | No | Freq | Reading | Aux | Level | Limit | Over
Limit | Pol | |----|---------|---------|-------|--------|--------|---------------|------------| | | MHz | dBm | dB | dBm | dBm | dB | V/H | | 1 | 106.63 | -64.38 | 0.49 | -63.89 | -54.00 | -9.89 | VERTICAL | | 2 | 204.60 | -71.32 | 1.91 | -69.41 | -54.00 | -15.41 | VERTICAL | | 3 | 499.48 | -78.32 | 8.95 | -69.37 | -54.00 | -15.37 | VERTICAL | | 4 | 597.45 | -81.44 | 10.08 | -71.36 | -54.00 | -17.36 | VERTICAL | | 5 | 694.45 | -81.99 | 13.69 | -68.30 | -54.00 | -14.30 | VERTICAL | | 6 | 755.56 | -82.06 | 13.68 | -68.38 | -54.00 | -14.38 | VERTICAL | | 7 | 4960.00 | -77.57 | 16.40 | -61.17 | -30.00 | -31.17 | VERTICAL | | 8 | 6866.00 | -78.02 | 21.29 | -56.73 | -30.00 | -26.73 | VERTICAL | | | | | | | | | | | 1 | 90.14 | -72.46 | 0.70 | -71.76 | -54.00 | -17.76 | HORIZONTAL | | 2 | 191.99 | -71.03 | 1.70 | -69.33 | -54.00 | -15.33 | HORIZONTAL | | 3 | 528.58 | -81.10 | 9.36 | -71.74 | -54.00 | -17.74 | HORIZONTAL | | 4 | 602.30 | -81.06 | 11.25 | -69.81 | -54.00 | -15.81 | HORIZONTAL | | 5 | 718.70 | -81.16 | 13.20 | -67.96 | -54.00 | -13.96 | HORIZONTAL | | 6 | 831.22 | -81.75 | 14.67 | -67.08 | -54.00 | -13.08 | HORIZONTAL | | 7 | 4960.00 | -74.05 | 16.40 | -57.65 | -30.00 | -27.65 | HORIZONTAL | | 8 | 6740.00 | -78.72 | 20.70 | -58.02 | -30.00 | -28.02 | HORIZONTAL | | | 30MHz - 80MHz: 5.04dB | |-------------------------|------------------------| | Measurement uncertainty | 80MHz -1000MHz: 3.76dB | | | 1GHz - 26GHz: 4.45dB | - 1. The emission behaviors belong to narrowband spurious emission. - 2. Remark "---" means that the emission level is too low to be measured - 3. The result basic equation calculation is as follows: - 4. ERP/EIRP (dBm) = SG Setting(dBm) + Antenna Gain (dB/dBi) Cable loss (dB) - 5. Measurement Range upto 12.75GHz. BT832; BT832A: **Test Mode: BT BLE, TX CH Low** Ambient temperature: 25 Relative humidity: 60% Test Date: 2017/08/21 | No | Freq | Reading | Aux | Level | Limit | Over
Limit | Pol | |----|---------|---------|-------|--------|--------|---------------|------------| | | MHz | dBm | dB | dBm | dBm | dB | V/H | | 1 | 106.63 | -64.83 | 0.49 | -64.34 | -54.00 | -10.34 | VERTICAL | | 2 | 200.72 | -72.76 | 1.62 | -71.14 | -54.00 | -17.14 | VERTICAL | | 3 | 497.54 | -80.17 | 8.95 | -71.22 | -54.00 | -17.22 | VERTICAL | | 4 | 636.25 | -82.29 | 11.56 | -70.73 | -54.00 | -16.73 | VERTICAL | | 5 | 691.54 | -81.95 | 13.58 | -68.37 | -54.00 | -14.37 | VERTICAL | | 6 | 827.34 | -82.77 | 14.22 | -68.55 | -54.00 | -14.55 | VERTICAL | | 7 | 2001.00 | -63.38 | 4.63 | -58.75 | -30.00 | -28.75 | VERTICAL | | 8 | 4804.00 | -79.43 | 15.71 | -63.72 | -30.00 | -33.72 | VERTICAL | | | | | | | | | | | 1 | 83.35 | -72.10 | 0.31 | -71.79 | -36.00 | -35.79 | HORIZONTAL | | 2 | 191.99 | -70.91 | 1.70 | -69.21 | -54.00 | -15.21 | HORIZONTAL | | 3 | 547.98 | -81.95 | 9.98 | -71.97 | -54.00 | -17.97 | HORIZONTAL | | 4 | 622.67 | -82.15 | 11.42 | -70.73 | -54.00 | -16.73 | HORIZONTAL | | 5 | 718.70 | -82.80 | 13.20 | -69.60 | -54.00 | -15.60 | HORIZONTAL | | 6 | 786.60 | -82.60 | 14.19 | -68.41 | -54.00 | -14.41 | HORIZONTAL | | 7 | 1497.00 | -66.27 | 2.31 | -63.96 | -30.00 | -33.96 | HORIZONTAL | | 8 | 4804.00 | -79.18 | 15.63 | -63.55 | -30.00 | -33.55 | HORIZONTAL | | | 30MHz - 80MHz: 5.04dB | |-------------------------|------------------------| | Measurement uncertainty | 80MHz -1000MHz: 3.76dB | | | 1GHz - 26GHz: 4.45dB | - 1. The emission behaviors belong to narrowband spurious emission. - 2. Remark "---" means that the emission level is too low to be measured - 3. The result basic equation calculation is as follows: - 4. ERP/EIRP (dBm) = SG Setting(dBm) + Antenna Gain (dB/dBi) Cable loss (dB) - 5. Measurement Range upto 12.75GHz. Test Mode: BT BLE, TX CH High Ambient temperature: 25 Relative humidity: 60% Test Date: 2017/08/21 | No | Freq | Reading | Aux | Level | Limit | Over
Limit | Pol | |----|---------|---------|-------|--------|--------|---------------|------------| | | MHz | dBm | dB | dBm | dBm | dB | V/H | | 1 | 106.63 | -64.83 | 0.49 | -64.34 | -54.00 | -10.34 | VERTICAL | | 2 | 192.96 | -72.58 | 2.15 | -70.43 | -54.00 | -16.43 | VERTICAL | | 3 | 499.48 | -76.84 | 8.95 | -67.89 | -54.00 | -13.89 | VERTICAL | | 4 | 572.23 | -81.67 | 9.47 | -72.20 | -54.00 | -18.20 | VERTICAL | | 5 | 674.08 | -83.44 | 12.96 | -70.48 | -54.00 | -16.48 | VERTICAL | | 6 | 782.72 | -81.64 | 13.52 | -68.12 | -54.00 | -14.12 | VERTICAL | | 7 | 1497.00 | -60.88 | 1.84 | -59.04 | -30.00 | -29.04 | VERTICAL | | 8 | 4960.00 | -76.22 | 16.40 | -59.82 | -30.00 | -29.82 | VERTICAL | | | | | | | | | | | 1 | 106.63 | -74.81 | 1.11 | -73.70 | -54.00 | -19.70 | HORIZONTAL | | 2 | 191.99 | -70.04 | 1.70 | -68.34 | -54.00 | -14.34 | HORIZONTAL | | 3 | 526.64 | -80.95 | 9.30 | -71.65 | -54.00 | -17.65 | HORIZONTAL | | 4 | 612.97 | -81.24 | 11.34 | -69.90 | -54.00 | -15.90 | HORIZONTAL | | 5 | 731.31 | -82.32 | 13.64 | -68.68 | -54.00 | -14.68 | HORIZONTAL | | 6 | 833.16 | -81.06 | 14.70 | -66.36 | -54.00 | -12.36 | HORIZONTAL | | 7 | 4960.00 | -78.64 | 16.15 | -62.49 | -30.00 | -32.49 | HORIZONTAL | | 8 | 6404.00 | -77.97 | 22.98 | -54.99 | -30.00 | -24.99 | HORIZONTAL | | | 30MHz - 80MHz: 5.04dB | |-------------------------|------------------------| | Measurement uncertainty | 80MHz -1000MHz: 3.76dB | | | 1GHz - 26GHz: 4.45dB | - 1. The emission behaviors belong to narrowband spurious emission. - 2. Remark "---" means that the emission level is too low to be measured - 3. The result basic equation calculation is as follows: - 4. ERP/EIRP (dBm) = SG Setting(dBm) + Antenna Gain (dB/dBi) Cable loss (dB) - 5. Measurement Range upto 12.75GHz. # 7.9 ETSI EN 300 328 SUB-CLAUSE 4.3.2.10 Receiver Spurious Emissions This requirement applies to all types of equipment using wide band modulations other than FHSS. #### 7.9.1 Limit: Sub-Clause 4.3.2.10.3 The spurious emissions of the receiver shall not exceed the values given in table In case of equipment with antenna connectors, these limits apply to emissions at the antenna port (conducted). For emissions radiated by the cabinet or emissions radiated by integral antenna equipment (without antenna connectors), these limits are e.r.p. for emissions up to 1 GHz and e.i.r.p. for emissions above 1 GHz. Table 13: Spurious emission limits for receivers | Frequency range | Maximum power | Measurement bandwidth | |--------------------|---------------|-----------------------| | 30 MHz to 1 GHz | -57 dBm | 100 kHz | | 1 GHz to 12,75 GHz | -47 dBm | 1 MHz | #### 7.9.2 Test Procedure: See Sub-Clause 5.4.10.1 of ETSI EN 300 328 for the test conditions See Sub-Clause 5.4.10.2 and 5.4.10.2.2 of ETSI EN 300 328 for Conducted Pre-Scan test method. See Sub-Clause 5.4.10.2.2 of ETSI EN 300 328 for final Radiated test method. #### **7.9.3 Test Result:** BT832F; BT832AF **Test Mode: BT BLE, RX CH Low** Ambient temperature: 25 Relative humidity: 60% Test Date: 2017/08/21 | No | Freq | Reading | Aux | Level | Limit | Over
Limit | Pol | |----|---------|---------|-------|--------|--------|---------------|------------| | | MHz | dBm | dB | dBm | dBm | dB | V/H | | 1 | 106.63 | -65.36 | 0.49 | -64.87 | -57.00 | -7.87 | VERTICAL | | 2 | 286.08 | -71.93 | 4.42 | -67.51 | -57.00 | -10.51 | VERTICAL | | 3 | 417.03 | -78.47 | 7.18 | -71.29 | -57.00 | -14.29 | VERTICAL | | 4 | 599.39 | -79.35 | 10.13 | -69.22 | -57.00 | -12.22 | VERTICAL | | 5 | 692.51 | -81.63 | 13.62 | -68.01 | -57.00 | -11.01 | VERTICAL | | 6 | 842.86 | -81.67 | 14.66 | -67.01 | -57.00 | -10.01 | VERTICAL | | 7 | 1994.00 | -68.06 | 4.60 | -63.46 | -47.00 | -16.46 | VERTICAL | | 8 | 6124.00 | -78.46 | 18.87 | -59.59 | -47.00 | -12.59 | VERTICAL | | | | | | | | | | | 1 | 90.14 | -71.99 | 0.59 | -71.40 | -57.00 | -14.40 | HORIZONTAL | | 2 | 191.99 | -70.83 | 2.23 | -68.60 | -57.00 | -11.60 | HORIZONTAL | | 3 | 286.08 | -72.53 | 4.42 | -68.11 | -57.00 | -11.11 | HORIZONTAL | | 4 | 464.56 | -80.38 | 9.02 | -71.36 | -57.00 | -14.36 | HORIZONTAL | | 5 | 704.15 | -82.80 | 13.87 | -68.93 | -57.00 | -11.93 | HORIZONTAL | | 6 | 889.42 | -82.23 | 16.38 | -65.85 | -57.00 | -8.85 | HORIZONTAL | | 7 | 3023.00 | -71.49 | 7.47 | -64.02 | -47.00 | -17.02 | HORIZONTAL | | 8 | 6278.00 | -78.71 | 21.79 | -56.92 | -47.00 | -9.92 | HORIZONTAL | | | 30MHz - 80MHz: 5.04dB | |-------------------------|------------------------| | Measurement uncertainty | 80MHz -1000MHz: 3.76dB | | | 1GHz - 26GHz: 4.45dB | - 1. The emission behaviors belong to narrowband spurious emission. - 2. Remark "---" means that the emission level is too low to be measured - 3. The result basic equation calculation is as follows: - 4. ERP/EIRP (dBm) = SG Setting(dBm) + Antenna Gain (dB/dBi) Cable loss (dB) - 5. Measurement Range upto 12.75GHz. Test Mode: BT BLE, RX CH High
Ambient temperature: 25 Relative humidity: 60% Test Date: 2017/08/21 | No | Freq | Reading | Aux | Level | Limit | Over
Limit | Pol | |----|---------|---------|-------|--------|--------|---------------|------------| | | MHz | dBm | dB | dBm | dBm | dB | V/H | | 1 | 106.63 | -64.18 | 0.49 | -63.69 | -57.00 | -6.69 | VERTICAL | | 2 | 230.79 | -74.47 | 3.69 | -70.78 | -57.00 | -13.78 | VERTICAL | | 3 | 283.17 | -70.92 | 4.46 | -66.46 | -57.00 | -9.46 | VERTICAL | | 4 | 476.20 | -78.48 | 9.00 | -69.48 | -57.00 | -12.48 | VERTICAL | | 5 | 692.51 | -81.61 | 13.62 | -67.99 | -57.00 | -10.99 | VERTICAL | | 6 | 869.05 | -82.38 | 15.60 | -66.78 | -57.00 | -9.78 | VERTICAL | | 7 | 1994.00 | -66.06 | 4.60 | -61.46 | -47.00 | -14.46 | VERTICAL | | 8 | 5809.00 | -78.86 | 18.33 | -60.53 | -47.00 | -13.53 | VERTICAL | | | | | | | | | | | 1 | 70.74 | -75.99 | 4.38 | -71.61 | -57.00 | -14.61 | HORIZONTAL | | 2 | 191.99 | -72.21 | 1.70 | -70.51 | -57.00 | -13.51 | HORIZONTAL | | 3 | 286.08 | -73.12 | 3.92 | -69.20 | -57.00 | -12.20 | HORIZONTAL | | 4 | 432.55 | -78.64 | 7.85 | -70.79 | -57.00 | -13.79 | HORIZONTAL | | 5 | 741.01 | -81.11 | 13.97 | -67.14 | -57.00 | -10.14 | HORIZONTAL | | 6 | 959.26 | -83.01 | 17.17 | -65.84 | -57.00 | -8.84 | HORIZONTAL | | 7 | 3121.00 | -72.06 | 7.91 | -64.15 | -47.00 | -17.15 | HORIZONTAL | | 8 | 6439.00 | -78.47 | 23.30 | -55.17 | -47.00 | -8.17 | HORIZONTAL | | | 30MHz - 80MHz: 5.04dB | |-------------------------|------------------------| | Measurement uncertainty | 80MHz -1000MHz: 3.76dB | | | 1GHz - 26GHz: 4.45dB | - 1. The emission behaviors belong to narrowband spurious emission. - 2. Remark "--- " means that the emission level is too low to be measured - 3. The result basic equation calculation is as follows: - 4. ERP/EIRP (dBm) = SG Setting(dBm) + Antenna Gain (dB/dBi) Cable loss (dB) - 5. Measurement Range upto 12.75GHz. BT832; BT832A F Test Mode: BT BLE, RX CH Low Ambient temperature: 25 Relative humidity: 60% Test Date: 2017/08/21 | No | Freq | Reading | Aux | Level | Limit | Over
Limit | Pol | |----|---------|---------|-------|--------|--------|---------------|------------| | | MHz | dBm | dB | dBm | dBm | dB | V/H | | 1 | 106.63 | -64.86 | 0.49 | -64.37 | -57.00 | -7.37 | VERTICAL | | 2 | 281.23 | -70.86 | 4.48 | -66.38 | -57.00 | -9.38 | VERTICAL | | 3 | 499.48 | -75.98 | 8.95 | -67.03 | -57.00 | -10.03 | VERTICAL | | 4 | 702.21 | -81.61 | 13.87 | -67.74 | -57.00 | -10.74 | VERTICAL | | 5 | 833.16 | -81.49 | 14.39 | -67.10 | -57.00 | -10.10 | VERTICAL | | 6 | 904.94 | -81.73 | 16.87 | -64.86 | -57.00 | -7.86 | VERTICAL | | 7 | 1994.00 | -68.83 | 4.60 | -64.23 | -47.00 | -17.23 | VERTICAL | | 8 | 5907.00 | -78.93 | 18.48 | -60.45 | -47.00 | -13.45 | VERTICAL | | | | | | | | | | | 1 | 83.35 | -72.23 | 0.31 | -71.92 | -57.00 | -14.92 | HORIZONTAL | | 2 | 191.99 | -70.07 | 1.70 | -68.37 | -57.00 | -11.37 | HORIZONTAL | | 3 | 285.11 | -73.58 | 3.94 | -69.64 | -57.00 | -12.64 | HORIZONTAL | | 4 | 431.58 | -77.21 | 7.82 | -69.39 | -57.00 | -12.39 | HORIZONTAL | | 5 | 616.85 | -81.71 | 11.38 | -70.33 | -57.00 | -13.33 | HORIZONTAL | | 6 | 772.05 | -81.49 | 14.23 | -67.26 | -57.00 | -10.26 | HORIZONTAL | | 7 | 3429.00 | -73.17 | 9.19 | -63.98 | -47.00 | -16.98 | HORIZONTAL | | 8 | 5809.00 | -79.16 | 18.43 | -60.73 | -47.00 | -13.73 | HORIZONTAL | | | 30MHz - 80MHz: 5.04dB | |-------------------------|------------------------| | Measurement uncertainty | 80MHz -1000MHz: 3.76dB | | | 1GHz - 26GHz: 4.45dB | - 1. The emission behaviors belong to narrowband spurious emission. - 2. Remark "---" means that the emission level is too low to be measured - 3. The result basic equation calculation is as follows: - 4. ERP/EIRP (dBm) = SG Setting(dBm) + Antenna Gain (dB/dBi) Cable loss (dB) - 5. Measurement Range upto 12.75GHz. Test Mode: BT BLE, RX CH High Ambient temperature: 25 Relative humidity: 60% Test Date: 2017/08/21 | No | Freq | Reading | Aux | Level | Limit | Over
Limit | Pol | |----|---------|---------|-------|--------|--------|---------------|------------| | | MHz | dBm | dB | dBm | dBm | dB | V/H | | 1 | 106.63 | -65.03 | 0.49 | -64.54 | -57.00 | -7.54 | VERTICAL | | 2 | 269.59 | -72.28 | 4.62 | -67.66 | -57.00 | -10.66 | VERTICAL | | 3 | 480.08 | -79.17 | 8.99 | -70.18 | -57.00 | -13.18 | VERTICAL | | 4 | 697.36 | -81.28 | 13.79 | -67.49 | -57.00 | -10.49 | VERTICAL | | 5 | 835.10 | -80.97 | 14.44 | -66.53 | -57.00 | -9.53 | VERTICAL | | 6 | 931.13 | -82.83 | 17.35 | -65.48 | -57.00 | -8.48 | VERTICAL | | 7 | 3051.00 | -71.28 | 7.49 | -63.79 | -47.00 | -16.79 | VERTICAL | | 8 | 5739.00 | -78.06 | 18.22 | -59.84 | -47.00 | -12.84 | VERTICAL | | | | | | | | | | | 1 | 82.38 | -71.12 | 0.25 | -70.87 | -57.00 | -13.87 | HORIZONTAL | | 2 | 191.99 | -71.49 | 1.70 | -69.79 | -57.00 | -12.79 | HORIZONTAL | | 3 | 286.08 | -73.50 | 3.92 | -69.58 | -57.00 | -12.58 | HORIZONTAL | | 4 | 458.74 | -78.66 | 8.36 | -70.30 | -57.00 | -13.30 | HORIZONTAL | | 5 | 629.46 | -81.15 | 11.48 | -69.67 | -57.00 | -12.67 | HORIZONTAL | | 6 | 833.16 | -80.36 | 14.70 | -65.66 | -57.00 | -8.66 | HORIZONTAL | | 7 | 3345.00 | -71.82 | 8.85 | -62.97 | -47.00 | -15.97 | HORIZONTAL | | 8 | 6481.00 | -79.46 | 23.69 | -55.77 | -47.00 | -8.77 | HORIZONTAL | | | 30MHz - 80MHz: 5.04dB | |-------------------------|------------------------| | Measurement uncertainty | 80MHz -1000MHz: 3.76dB | | | 1GHz - 26GHz: 4.45dB | - 1. The emission behaviors belong to narrowband spurious emission. - 2. Remark "--- " means that the emission level is too low to be measured - 3. The result basic equation calculation is as follows: - 4. ERP/EIRP (dBm) = SG Setting(dBm) + Antenna Gain (dB/dBi) Cable loss (dB) - 5. Measurement Range upto 12.75GHz. #### 7.10 ETSI EN 300 328 SUB-CLAUSE 4.3.2.11 Receiver Blocking This requirement applies to all receiver categories below. ## Receiver categories #### Receiver category 1 Adaptive equipment with a maximum RF output power greater than 10 dBm e.i.r.p. shall be considered as receiver category 1 equipment. #### Receiver category 2 Non-adaptive equipment with a Medium Utilization (MU) factor greater than 1 % and less than or equal to 10 % or adaptive equipment with a maximum RF output power of 10 dBm e.i.r.p. shall be considered as receiver category 2 equipment. #### Receiver category 3 Non-adaptive equipment with a maximum Medium Utilization (MU) factor of 1 % or adaptive equipment with a maximum RF output power of 0 dBm e.i.r.p. shall be considered as receiver category 3 equipment. #### 7.10.1 Limit: Sub-Clause 4.3.2.11.3 While maintaining the minimum performance criteria as defined in clause 4.3.2.11.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 14, table 15 or table 16. Table 14: Receiver Blocking parameters for Receiver Category 1 equipment | Wanted signal mean
power from companion
device (dBm) | Blocking signal
frequency
(MHz) | Blocking
signal power
(dBm)
(see note 2) | Type of blocking signal | |--|--|---|-------------------------| | P _{min} + 6 dB | 2 380
2 503,5 | -53 | CW | | P _{min} + 6 dB | 2 300
2 330
2 360 | -47 | CW | | P _{min} + 6 dB | 2 523,5
2 553,5
2 583,5
2 613,5
2 643,5
2 673,5 | -47 | CW | NOTE 1: P_{min} is the minimum level of the wanted signal (in dBm) required to meet the minimum performance criteria as defined in clause 4.3.2.11.3 in the absence of any blocking signal. NOTE 2: The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the levels have to be corrected by the actual antenna assembly gain. Table 15: Receiver Blocking parameters receiver category 2 equipment | Wanted signal mean
power from companion
device (dBm) | Blocking signal
frequency
(MHz) | Blocking
signal power
(dBm)
(see note 2) | Type of blocking
signal | |--|---------------------------------------|---|----------------------------| | P _{min} + 6 dB | 2 380
2 503,5 | -57 | CW | | P _{min} + 6 dB | 2 300
2 583,5 | -47 | CW | NOTE 1: P_{min} is the minimum level of the wanted signal (in dBm) required to meet the minimum performance criteria as defined in clause 4.3.2.11.3 in the absence of any blocking signal. NOTE 2: The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the levels have to be corrected by the actual antenna assembly gain. Table 16: Receiver Blocking parameters receiver category 3 equipment | Wanted signal mean
power from companion
device (dBm) | Blocking signal
frequency
(MHz) | Blocking
signal power
(dBm)
(see note 2) | Type of blocking signal | |--|---------------------------------------|---|-------------------------| | P _{min} + 12 dB | 2 380
2 503,5 | -57 | CW | | P _{min} + 12 dB | 2 300
2 583,5 | -47 | CW | NOTE 1: P_{min} is the minimum level of the wanted signal (in dBm) required to meet the minimum performance criteria as defined in clause 4.3.2.11.3 in the absence of any blocking signal. NOTE 2: The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the levels have to be corrected by the actual antenna assembly gain. #### 7.10.2 Test Procedure: See Sub-Clause 5.4.11.1 of ETSI EN 300 328 for the test conditions See Sub-Clause 5.4.11.2 of ETSI EN 300 328 for conducted method. # 7.10.3 Test Result:PASS # **Test Detail - Receiver Blocking Test** | Blocking Freq
(MHz) | PER (%) | Limit (%) | Status | |------------------------|---------|-----------|--------| | 2300 |
8.91 | 10 | Pass | | 2380 | 0.99 | 10 | Pass | | 2503.5 | 0.00 | 10 | Pass | | 2583.5 | 1.00 | 10 | Pass | ## 7.11 ETSI EN 300 328 SUB-CLAUSE 4.3.2.12 Geo-location capability This requirement only applies to equipment with geo-location capability as defined in ETSI EN 300 328 clause 4.3.1.12.2 below Geo-location capability is a feature of the equipment to determine its geographical location with the purpose to configure itself according to the regulatory requirements applicable at the geographical location where it operates. The geo-location capability may be present in the equipment or in an external device (temporary) associated with the equipment operating at the same geographical location during the initial power up of the equipment. The geographical location may also be available in equipment already installed and operating at the same geographical location. #### **7.11.1 Requirement: Sub-Clause 4.3.2.12.3** The geographical location determined by the equipment as defined in clause 4.3.2.12.2 shall not be accessible to the user. #### **7.11.2 Result: PASS** The device does not have selection Geo-location capability to the user. # APPENDIX 1 PHOTOGRAPHS OF SET UP BT832F; BT832AF # APPENDIX 2 PHOTOGRAPHS OF EUT EUT 1 Model: BT832 EUT 2 Model: BT832F EUT 3 Model: BT832 EUT 4 Model: BT832 EUT 5 Model: BT832F EUT 6 Model: BT832F EUT 7 Model: BT832F EUT 8 Model: BT832A EUT 10 Model: BT832A EUT 11 Model: BT832AF EUT 12 Model: BT832AF EUT 13 Model: BT832AF ~ End of Report ~